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Abstract. In the final paper of a series of papers concerning inter-
universal Teichmüller theory, Mochizuki verified various numerically
non-effective versions of the Vojta, ABC, and Szpiro Conjectures over
number fields. In the present paper, we obtain various numerically ef-
fective versions of Mochizuki’s results. In order to obtain these results,
we first establish a version of the theory of étale theta functions that
functions properly at arbitrary bad places, i.e., even bad places that
divide the prime “2”. We then proceed to discuss how such a modi-
fied version of the theory of étale theta functions affects inter-universal
Teichmüller theory. Finally, by applying our slightly modified version
of inter-universal Teichmüller theory, together with various explicit esti-
mates concerning heights, the j-invariants of “arithmetic” elliptic curves,
and the prime number theorem, we verify the numerically effective ver-
sions of Mochizuki’s results referred to above. These numerically ef-
fective versions imply effective diophantine results such as an effective
version of the ABC inequality over mono-complex number fields [i.e.,
the rational number field or an imaginary quadratic field] and effective
versions of conjectures of Szpiro. We also obtain an explicit estimate
concerning “Fermat’s Last Theorem” (FLT) — i.e., to the effect that
FLT holds for prime exponents > 1.615 · 1014 — which is sufficient, in
light of a numerical result of Coppersmith, to give an alternative proof of
the first case of FLT. In the second case of FLT, if one combines the tech-
niques of the present paper with a recent estimate due to Mihăilescu and
Rassias, then the lower bound “1.615 · 1014” can be improved to “257”.
This estimate, combined with a classical result of Vandiver, yields an
alternative proof of the second case of FLT. In particular, the results of
the present paper, combined with the results of Vandiver, Coppersmith,
and Mihăilescu-Rassias, yield an unconditional new alternative proof of
Fermat’s Last Theorem.
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Introduction

In [IUTchIV], Mochizuki applied the theory of [IUTchI-IV] [cf. also
[Alien] for a detailed survey of this theory] to prove the following result
[cf. [IUTchIV], Corollary 2.2, (ii), (iii)]:

Theorem. Write X for the projective line over Q; D ⊆ X for the divisor
consisting of the three points “0”, “1”, and “∞”; (Mell)Q for the moduli
stack of elliptic curves over Q. We shall regard X as the “λ-line” — i.e.,
we shall regard the standard coordinate on X as the “λ” in the Legendre
form “y2 = x(x−1)(x−λ)” of the Weierstrass equation defining an elliptic
curve — and hence as being equipped with a natural classifying morphism

UX
def
= X \D → (Mell)Q. Write

log(q∀(−))

for the R-valued function on (Mell)Q(Q), hence also on UX(Q), obtained by
forming the normalized degree “deg(−)” of the effective arithmetic divisor
determined by the q-parameters of an elliptic curve over a number field at
arbitrary nonarchimedean places. Let

KV ⊆ UX(Q)

be a compactly bounded subset that satisfies the following conditions:

(CBS1) The support of KV contains the nonarchimedean place “2”.

(CBS2) The image of the subset “K2 ⊆ UX(Q2)” associated to KV via the j-
invariant UX → (Mell)Q → A1

Q is a bounded subset of A1
Q(Q2) =

Q2, i.e., is contained in a subset of the form 2Nj-inv · O
Q2

⊆ Q2,

where Nj-inv ∈ Z, and O
Q2

⊆ Q2 denotes the ring of integers [cf. the

condition (∗j-inv) of [IUTchIV], Corollary 2.2, (ii)].

Then there exist

· a positive real number Hunif which is independent of KV and

· positive real numbers CK and HK which depend only on the choice
of the compactly bounded subset KV

such that the following property is satisfied: Let d be a positive integer, εd
and ε positive real numbers ≤ 1. Then there exists a finite subset

Excε,d ⊆ UX(Q)≤d

— where we denote by UX(Q)≤d ⊆ UX(Q) the subset of Q-rational points
defined over a finite extension field of Q of degree ≤ d — which depends
only on KV , ε, d, and εd, and satisfies the following properties:
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• The function log(q∀(−)) is

≤ Hunif · ε−3 · ε−3
d · d4+εd +HK

on Excε,d.

• Let EF be an elliptic curve over a number field F ⊆ Q that determines
a Q-valued point of (Mell)Q which lifts [not necessarily uniquely!] to a point

xE ∈ UX(F ) ∩ UX(Q)≤d such that

xE ∈ KV , xE /∈ Excε,d.

Write Fmod for the minimal field of definition of the corresponding point
∈ (Mell)Q(Q) and

Fmod ⊆ Ftpd
def
= Fmod(EFmod

[2]) ⊆ F

for the “tripodal” intermediate field obtained from Fmod by adjoining the
fields of definition of the 2-torsion points of any model of EF ×F Q over
Fmod [cf. [IUTchIV], Proposition 1.8, (ii), (iii)]. Moreover, we assume that
the (3 · 5)-torsion points of EF are defined over F , and that

F = Fmod(
√−1, EFmod

[2 · 3 · 5]) def
= Ftpd(

√−1, EFtpd
[3 · 5])

— i.e., that F is obtained from Ftpd by adjoining
√−1, together with the

fields of definition of the (3 ·5)-torsion points of a model EFtpd
of the elliptic

curve EF ×F Q over Ftpd determined by the Legendre form of the Weier-
strass equation discussed above. Then EF and Fmod arise as the “EF” and
“Fmod” for a collection of initial Θ-data as in [IUTchIV], Theorem 1.10,
that satisfies the following conditions:

(C1) (log(q∀xE
))1/2 ≤ l ≤ 10δ · (log(q∀xE

))1/2 · log(2δ · log(q∀xE
));

(C2) we have an inequality

1
6 · log(q∀xE

) ≤ (1 + ε) · (log-diffX(xE) + log-condD(xE)) + CK

— where we write δ
def
= 212 ·33 ·5·d; log-diffX for the [normalized] log-different

function on UX(Q) [cf. [GenEll], Definition 1.5, (iii)]; log-condD for the
[normalized] log-conductor function on UX(Q) [cf. [GenEll], Definition 1.5,
(iv)].

In the present paper, we prove a numerically effective version of this
theorem without assuming the conditions (CBS1), (CBS2) [cf. the portion
of Corollary 5.2 that concerns κ/κlog/K]. Moreover, we prove that if one
restricts one’s attention to the case where the point “xE” is defined over
a mono-complex number field [i.e., Q or an imaginary quadratic field — cf.
Definition 1.2], then one may eliminate the compactly bounded subset “KV ”
from the statement of this theorem [cf. the portion of Corollary 5.2 that
does not concern κ/κlog/K].

In order to obtain Corollary 5.2, we establish a version of the theory
of étale theta functions that functions properly at arbitrary bad places, i.e.,
even bad places that divide the prime “2”. Roughly speaking, this is achieved
by modifying the notion of evaluation points at which the theta function is
evaluated [cf. the explanation of §3 below for more details].
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We then proceed to apply Corollary 5.2 to verify the following effective
diophantine results [cf. Theorems 5.3, 5.4; Remarks 5.3.3, 5.3.4, 5.3.5; Corol-
lary 5.8; the notations and conventions of §0]:

Theorem A. (Effective versions of ABC/Szpiro inequalities over
mono-complex number fields) Let L be a mono-complex number field
[i.e., Q or an imaginary quadratic field — cf. Definition 1.2]; a, b, c ∈ L×
nonzero elements of L such that

a+ b+ c = 0;

ε a positive real number ≤ 1. Write Ea,b,c for the elliptic curve over L
defined by the equation y2 = x(x− 1)(x+ a

c ); j(Ea,b,c) for the j-invariant of

Ea,b,c; ΔL for the absolute value of the discriminant of L; d
def
= [L : Q];

HL(a, b, c)
def
=

∏
v∈V(L)

max{|a|v, |b|v, |c|v};

IL(a, b, c)
def
= {v ∈ V(L)non | �{|a|v, |b|v, |c|v} ≥ 2} ⊆ V(L)non;

radL(a, b, c)
def
=

∏
v∈IL(a,b,c)

�(OL/pv);

hd(ε)
def
=

{
3.4 · 1030 · ε−166/81 (d = 1)

6 · 1031 · ε−174/85 (d = 2).

Then the following hold:

(i) We have [cf. Definition 1.1, (i)]

1
6 · hnon(j(Ea,b,c)) ≤ max{1

d · (1 + ε) · log(ΔL · radL(a, b, c)), 16 · hd(ε)}
≤ 1

d · (1 + ε) · log(ΔL · radL(a, b, c)) + 1
6 · hd(ε).

(ii) We have

HL(a, b, c) ≤ 25d/2 ·max{exp(d4 · hd(ε)), (ΔL · radL(a, b, c))3(1+ε)/2}
≤ 25d/2 · exp(d4 · hd(ε)) · (ΔL · radL(a, b, c))3(1+ε)/2.

Theorem B. (Effective version of a conjecture of Szpiro) Let a, b, c
be nonzero coprime integers such that

a+ b+ c = 0;

ε a positive real number ≤ 1. Then we have

|abc| ≤ 24 ·max{exp(1.7 · 1030 · ε−166/81), (rad(abc))3(1+ε)}
≤ 24 · exp(1.7 · 1030 · ε−166/81) · (rad(abc))3(1+ε)

— which may be regarded as an explicit version of the inequality

“|abc| ≤ C(ε)
(∏
p|abc

p
)3+ε

”
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conjectured in [Szp], §2 [i.e., the “forme forte” of loc. cit., where we note
that the “p” to the right of the “

∏
” in the above display was apparently

unintentionally omitted in loc. cit.].

Corollary C. (Application to “Fermat’s Last Theorem”) Let

p > 1.615 · 1014
be a prime number. Then there does not exist any triple (x, y, z) of positive
integers that satisfies the Fermat equation

xp + yp = zp.

The proof of Corollary C is obtained by combining

• the slightly modified version of [IUTchI-IV] developed in the present
paper with

• various estimates [cf. Lemmas 5.5, 5.6, 5.7] of an entirely elementary
nature.

In fact, the lower bound of Corollary C may be strengthened roughly by a
factor of 2 by applying the results of [Ink1], [Ink2] [cf. Remarks 5.7.1, 5.8.2],
which are obtained by means of techniques of classical algebraic number
theory that are somewhat more involved than the argument applied in the
corresponding portion of the proof of Corollary C. The original estimate
of Corollary C is sufficient, in light of a numerical result of Coppersmith,
to give an alternative proof [i.e., to the proof of [Wls]] of the first case of
Fermat’s Last Theorem [cf. Remark 5.8.1]. In the second case of Fermat’s
Last Theorem, if one combines the techniques of the present paper with
a recent estimate due to Mihăilescu and Rassias, then the lower bound
“1.615 · 1014” of Corollary C can be improved to “257” [cf. Remark 5.8.3,
(i)]. This estimate, combined with a classical result of Vandiver, yields an
alternative proof [i.e., to the proof of [Wls]] of the second case of Fermat’s
Last Theorem [cf. Remark 5.8.3, (ii)]. In particular,

the results of the present paper, combined with the results
of Vandiver, Coppersmith, and Mihăilescu-Rassias, yield an
unconditional new alternative proof [i.e., to the proof
of [Wls]] of Fermat’s Last Theorem.

[The authors have received informal reports to the effect that one math-
ematician has obtained some sort of numerical estimate that is formally
similar to Corollary C, but with a substantially weaker [by many orders of
magnitude!] lower bound for p, by combining the techniques of [IUTchIV],
§1, §2, with effective computations concerning Belyi maps. On the other
hand, the authors have not been able to find any detailed written exposition
of this informally advertized numerical estimate and are not in a position to
comment on it.]

We also obtain an application of the ABC inequality of Theorem B to
a generalized version of Fermat’s Last Theorem [cf. Corollary 5.9], which
does not appear to be accessible via the techniques involving modularity of
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elliptic curves over Q and deformations of Galois representations that play
a central role in [Wls].

In the following, we explain the content of each section of the present
paper in greater detail.

In §1, we examine various [elementary and essentially well-known] proper-
ties of heights of elliptic curves over number fields. Let F ⊆ Q be a number
field; E an elliptic curve over F that has semi-stable reduction over the ring
of integers OF of F . Suppose that E is isomorphic over Q to the elliptic
curve defined by an equation

y2 = x(x− 1)(x− λ)

— where λ ∈ Q \ {0, 1}. For simplicity, assume further that

Q(λ) is mono-complex

[i.e., Q or an imaginary quadratic field — cf. Definition 1.2]. Write j(E) ∈ Q

for the j-invariant of E. In Corollary 1.14, (iii), we verify that the [logarith-
mic] Weil height

h(j(E))

[cf. Definition 1.1, (i)] of j(E) satisfies the following property:

(H1) Let l be a prime number. Suppose that E admits an l-cyclic sub-
group scheme, and that l is prime to the local heights of E at each
of its places of [bad] multiplicative reduction [i.e., the orders of the
q-parameter at such places — cf. [GenEll], Definition 3.3]. Then the
nonarchimedean portion of h(j(E)) is bounded by an explicit absolute
constant ∈ R.

To verify (H1), we make use of the following two types of heights:

• the Faltings height hFal(E) [cf. the discussion entitled “Curves” in
§0],

• the symmetrized toric height hS-tor(E) [cf. Definition 1.7].

These heights hFal(E) and hS-tor(E) may be related to h(j(E)) by means of
numerically explicit inequalities [cf. Propositions 1.8, 1.10, 1.12] and satisfy
the following important properties:

(H2) Let E′ be an elliptic curve over F ; φ : E → E′ an isogeny of degree d.
Then it holds that hFal(E′) − hFal(E) ≤ 1

2 log(d) [cf. [Falt], Lemma
5].

(H3) The archimedean portion of hS-tor(E) is bounded above by the nonar-
chimedean portion of hS-tor(E) [cf. Proposition 1.9, (i)].

[Here, we note that (H3) is an immediate consequence of the product formula,
together with the assumption that the cardinality of the set of archimedean
places of the mono-complex number field Q(λ) is one.] The property (H1)
then follows, essentially formally, by applying (H2) and (H3), together with
the numerically explicit inequalities [mentioned above], which allow one to
compare the different types of heights.

In §2, we review
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• a result concerning the j-invariants of “arithmetic” elliptic curves
[cf. Proposition 2.1];

• certain effective versions of the prime number theorem [cf. Proposi-
tion 2.2].

In §3, we establish a version of the theory of étale theta functions [cf.
[EtTh], [IUTchII]] that functions properly at arbitrary bad places, i.e., even
bad places that divide the prime “2”. Here, we note that the original def-
inition of the notion of an evaluation point — i.e., a point at which the
theta function is evaluated that is obtained by translating a cusp by a 2-
torsion point [cf. [EtTh], Definition 1.9; [IUTchI], Example 4.4, (i)] — does
not function properly at places over 2 [cf. [IUTchIV], Remark 1.10.6, (ii)].
Thus, it is natural to pose the following question:

Is it possible to obtain a new definition of evaluation points
that functions properly at arbitrary bad places by replacing
the “2-torsion point” appearing in the [original] definition of
an evaluation point by an “n-torsion point”, for some integer
n > 2?

Here, we recall that the definition of an evaluation point obtained by trans-
lating a cusp by an n-torsion point functions properly at arbitrary bad places
if the following two conditions are satisfied:

(1) The various ratios of theta values at the Galois conjugates of [the
point of the Tate uniformization of a Tate curve corresponding to a
primitive 2n-th root of unity] ζ2n are roots of unity [cf. [IUTchII],
Remark 2.5.1, (ii)].

(2) The theta value at ζ2n is a unit at arbitrary bad places [cf. [IUTchIV],
Remark 1.10.6, (ii)].

One fundamental observation—due to Porowski— that underlies the theory
of the present paper is the following:

n satisfies the conditions (1), (2) if and only if n = 6

[cf. Lemma 3.1; Proposition 3.2; the well-known fact that 1 − ζ4, 1 − ζ8
are non-units at places over 2]. Following this observation, in Definition
3.3, we introduce a new version of the notion of an “étale theta function
of standard type” [cf. [EtTh], Definition 1.9] obtained by normalizing étale
theta functions at points arising from 6-torsion points of the given elliptic
curve. In the remainder of §3, we then proceed to discuss how the adoption of
such “étale theta functions of μ6-standard type” affects the theory developed
in [EtTh].

Next, in §4, we discuss how the modifications of §3 affect [IUTchI-III].
Roughly speaking, we observe that, once one makes suitable minor technical
modifications,

(∗) the theory developed in [IUTchI-III] remains essentially unaffected
even if, in the notation of [IUTchI], Definition 3.1, (b), one eliminates
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the assumption “of odd residue characteristic” that appears in the
discussion of “Vbad

mod”.

In §5, we begin by proving a “μ6-version” [cf. Theorem 5.1] of [IUTchIV],
Theorem 1.10, i.e., that applies the theory developed in §2, §3, §4. This al-
lows us to obtain a “μ6-version” [cf. Corollary 5.2] of [IUTchIV], Corollary
2.2, (ii), (iii) [i.e., the “Theorem” reviewed at the beginning of the present
Introduction] without assuming the conditions (CBS1), (CBS2) that appear
in the statement of this Theorem concerning the nonarchimedean place “2”.
The proof of Corollary 5.2 makes essential use of the theory of §1, §2 [cf., es-
pecially, Corollary 1.14; Propositions 2.1, 2.2]. In the case of mono-complex
number fields, we then derive

• Theorem 5.3 from Corollary 5.2 by applying the product formula,
together with the essential assumption that the number field un-
der consideration is mono-complex [cf. the property (H3) discussed
above] and various elementary computations [such as Proposition
1.8, (i)];

• Theorem 5.4 from Theorem 5.3, together with various elementary
computations [such as Proposition 1.8, (i)].

Finally, we apply

• Theorem 5.3, together with various elementary considerations, to
“Fermat’s Last Theorem” [cf. Corollary 5.8] and

• Theorem 5.4, again together with various elementary computations,
to a generalized version of “Fermat’s Last Theorem” [cf. Corollary
5.9].

In this context, we note [cf. Remark 5.3.2] that it is quite possible that, in
the future, other interesting applications of Theorems 5.3, 5.4 to the study
of numerical aspects of diophantine equations can be found.
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0. Notations and Conventions

Numbers:

Let S be a set. Then we shall write �S for the cardinality of S.
Let E ⊆ R be a subset of the set of real numbers R. Then for λ ∈ R, if

� denotes “< λ”, “≤ λ”, “> λ”, or “≥ λ”, then we shall write E� ⊆ E for
the subset of elements that satisfy the inequality “�”. If E is finite, then
we shall write maxE for the smallest real number λ such that E≤λ = E and
minE for the largest real number λ such that E≥λ = E.

For any nonzero integer n /∈ {1,−1}, we shall write rad(n) for the product
of the distinct prime numbers p which divide n. We shall define rad(1) and
rad(−1) to be 1.

Let F be a field. Then we shall write F� def
= F \ {0, 1}.

Let Q be an algebraic closure of the field of rational numbers Q, F ⊆ Q a

subfield. Then we shall write OF ⊆ F for the ring of integers of F ; Z
def
= OQ;

Primes ⊆ Z for the set of all prime numbers; V(F )non (respectively, V(F )arc)
for the set of nonarchimedean (respectively, archimedean) places of F ;

V(F )
def
= V(F )arc

⋃
V(F )non.

For v ∈ V(F ), we shall write Fv for the completion of F at v.
Now suppose that F is a number field, i.e., that [F : Q] < ∞.
Let v ∈ V(F )non. Write pv ⊆ OF for the prime ideal corresponding to v;

pv for the residue characteristic of Fv; fv for the residue field degree of Fv

over Qpv ; ordv for the normalized valuation on Fv determined by v, where we
take the normalization to be such that ordv restricts to the standard pv-adic
valuation on Qpv . Then for any x ∈ Fv, we shall write

||x||v def
= p−ordv(x)

v , |x|v def
= ||x||[Fv :Qpv ]

v .

Let v ∈ V(F )arc. Write σv : F ↪→ C for the embedding determined, up to
complex conjugation, by v. Then for any x ∈ Fv, we shall write

||x||v def
= ||σv(x)||C, |x|v def

= ||x||[Fv :R]
v

— where we denote by || · ||C the standard [complex] absolute value on C.
Note that for any w ∈ V(Q) that lies over v ∈ V(F ), the absolute value

|| · ||v : Fv → R≥0 extends uniquely to an absolute value || · ||w : Qw → R≥0.

We shall refer to this absolute value on Qw as the standard absolute value
on Qw.

Curves:

Let E be an elliptic curve over a field. Then we shall write j(E) for the
j-invariant of E.
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Let E be an elliptic curve over a number field F that has semi-stable
reduction over OF . Write hFal(E) for the Faltings height of E [cf. [Falt], §3,
the first Definition]. Then we shall write

hFal(E)
def
= hFal(E) + 1

2 log π

[cf. [Lbr], Definition 2.3; [Lbr], Remark 2.1]. Here, we note that the quantity
hFal(E) is unaffected by passage to a finite extension of the base field F of
E [cf., e.g., [Lbr], Proposition 2.1, (i)].

1. Heights

Let E be an elliptic curve over a number field. In the present section,
we introduce the notion of the symmetrized toric height hS-tor(E) of E [cf.
Definition 1.7]. We then compare hS-tor(E) with the [logarithmic] Weil
height h(j(E)) of j(E) [cf. Proposition 1.8]. Finally, we prove that if E
satisfies certain conditions, then the nonarchimedean portion of h(j(E)) is
bounded by an absolute constant [cf. Corollary 1.14, (iii)].

Definition 1.1. Let F be a number field.

(i) Let α ∈ F . Then for � ∈ {non, arc}, we shall write

h�(α)
def
= 1

[F :Q]

∑
v∈V(F )�

logmax{|α|v, 1} (≥ 0),

h(α)
def
= hnon(α) + harc(α)

and refer to h(α) as the [logarithmic] Weil height of α. We shall also
write h�(α) for h(α).

(ii) Let α ∈ F×. Then for � ∈ {non, arc}, we shall write

htor� (α)
def
= 1

2[F :Q]

∑
v∈V(F )�

logmax{|α|v, |α|−1
v } (≥ 0),

htor(α)
def
= htornon(α) + htorarc(α)

and refer to htor(α) as the [logarithmic] toric height of α. We shall
also write htor� (α) for htor(α).

Remark 1.1.1. One verifies easily that for � ∈ {non, arc,�}, the quantities
h�(α) and htor� (α) are unaffected by passage to a finite extension of F .

Definition 1.2. Let F be a number field. Then we shall say that F is
mono-complex if F is either

the field of rational numbers Q or an imaginary quadratic field.

One verifies easily that F is mono-complex if and only if the cardinality of
V(F )arc is one.
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Lemma 1.3. (Properties of toric heights) Let F be a number field,
α ∈ F×. Then the following hold:

(i) It holds that

htor� (α) = htor� (α−1); htor� (α) = 1
2 · {h�(α) + h�(α

−1)}
for � ∈ {non, arc,�}.

(ii) It holds that
h(α) = htor(α).

In particular, we have h(α) = h(α−1) [cf. (i)].

(iii) Suppose that F is mono-complex. Then we have

htorarc(α) ≤ htornon(α).

(iv) Let x, y ∈ F ; xtor, ytor ∈ F×. Then we have

h�(x) + h�(y) ≥ h�(x · y);
htor� (xtor) + htor� (ytor) ≥ htor� (xtor · ytor)

for � ∈ {non, arc,�}.

Proof. First, we consider assertion (i). The first equality follows immedi-
ately from the various definitions involved. The second equality follows im-
mediately from the various definitions involved, together with the following
[easily verified] fact: For any s ∈ R>0, it holds that

max{s, s−1} = max{s, 1} ·max{s−1, 1}.
Next, we consider assertion (ii). Write d

def
= [F : Q]. Then we compute:

2d · htor(α) =
∑

v∈V(F )

logmax{|α|v, |α|−1
v } =

∑
v∈V(F )

log(|α|−1
v ·max{|α|2v, 1})

= 2d · h(α) +
∑

v∈V(F )

log |α|−1
v = 2d · h(α)

— where the final equality follows from the product formula. This completes
the proof of assertion (ii).

Next, we consider assertion (iii). Let w be the unique element of V(F )arc.
In light of the first equality of assertion (i), to verify assertion (iii), we may
assume without loss of generality that |α|w ≥ 1. Then we compute:

2d · htorarc(α) = log |α|w =
∑

v∈V(F )non

log |α|−1
v

≤
∑

v∈V(F )non

logmax{|α|v, |α|−1
v } = 2d · htornon(α)

— where the second equality follows from the product formula. This com-
pletes the proof of assertion (iii). Finally, we consider assertion (iv). It
follows immediately from the second equality of assertion (i) that to verify
the second inequality of assertion (iv), it suffices to verify the first inequal-
ity of assertion (iv). But the first inequality follows immediately from the
following [easily verified] fact: For any s, t ∈ R≥0, it holds that

max{st, 1} ≤ max{s, 1} ·max{t, 1}.
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This completes the proof of assertion (iv). �

Remark 1.3.1. It may appear to the reader, at first glance, that the notion
of the toric height of an element of a number field F is unnecessary [cf.
Lemma 1.3, (ii)]. In fact, however, the toric height of an element α ∈ F×
satisfies the following important property [cf. Lemma 1.3, (iii)]:

If F is mono-complex, then the archimedean portion of the
toric height of α is bounded by the nonarchimedean portion
of the toric height of α.

This property is an immediate consequence of the product formula [cf. the
proof of Lemma 1.3, (iii)]. We note that, in general, the notion of the Weil
height does not satisfy this property. For instance, for any n ∈ Z>0, we have

hnon(n) = 0; harc(n) = log(n);

htornon(n) = 1
2 log(n); htorarc(n) = 1

2 log(n).

Definition 1.4. Let F be a field; | · | : F → R≥0 a map satisfying the
following conditions:

(i) The restriction of | · | to F× determines a group homomorphism
F× → R>0 [relative to the multiplicative group structures on F×,
R>0].

(ii) It holds that |0| = 0.

(iii) For any x ∈ F , it holds that |x+ 1| ≤ |x|+ 1.

Then for α ∈ F�, we shall write

J(α)
def
= |α2 − α+ 1|3 · |α|−2 · |α− 1|−2

= |α(1− α)− 1|3 · |α|−2 · |1− α|−2;

J0∞(α)
def
= max

{|α|, |α|−1
}
;

J1∞(α)
def
= max

{|α− 1|, |α− 1|−1
}
;

J01(α)
def
= max

{|α− 1| · |α|−1, |α| · |α− 1|−1
}
.

Lemma 1.5. (Comparison between J(α) and |α|2) In the notation of
Definition 1.4, suppose that |α| ≥ 2. Then we have

|α|2 ≤ 28 · J(α).

Proof. First, we note that since |α− 1| ≤ |α|+ 1, we have

|α2 − α+ 1| = |α2 − (α− 1)| ≥ |α|2 − |α− 1| ≥ |α|2 − (|α|+ 1).

Thus, we conclude that

28 · |α2 − α+ 1|3 · |α|−2 · |α− 1|−2 ≥ 28 · (|α|2 − |α| − 1)3 · |α|−2 · (|α|+ 1)−2

≥ |α|2
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— where we observe that since x2 − x− 1 ≥ x(x− 3
2), −(x+1)2 ≥ −(2x)2,

and the function 3
2x−3 is monotonically decreasing for x ∈ R≥2, the final

inequality follows from the elementary fact that

28 · (x2 − x− 1)3 − x4 · (x+ 1)2 ≥ x3 · {28 · (x− 3
2)

3 − x · (x+ 1)2
}

≥ 22 · x3 · {26 · (x− 3
2)

3 − x3
}

≥ 28 · x3 · (x− 3
2)

3 ·
{
1− 2−6 · (1 + 3

2x−3)
3
}

≥ 0

for x ∈ R≥2. �

Lemma 1.6. (Comparison between J(α) and J0∞(α) ·J1∞(α) ·J01(α))
In the notation of Definition 1.4, the following hold:

(i) Write z for the rational function given by the standard coordinate
on P1

Z and

A
def
= {z, z−1, 1− z, (1− z)−1, z · (z − 1)−1, (z − 1) · z−1},

B
def
= {δ ⊆ A | �δ = 2; if we write δ = {a, b}, then

it holds that A = {a, a−1, b, b−1,−ab,−(ab)−1}}.
Then the set B coincides with the set

B′ def
= {{z, (1− z)−1}, {z, (z − 1) · z−1}, {z−1, 1− z},

{z−1, z · (z − 1)−1}, {1− z, z · (z − 1)−1},
{(1− z)−1, (z − 1) · z−1}}.

Moreover, the map

φ : B → A

{a, b} �→ −ab

is bijective. Here, we recall that the symmetric group on 3 letters
S3 admits a natural faithful action on the projective line P1

Z over Z,

hence also on the set of F -rational points (P1
Z \ {0, 1,∞})(F )

∼→ F�,
and that the orbit S3 ·z of z coincides with the set A. In particular,
the action of S3 on A induces, via φ−1, a transitive action of S3

on B.

(ii) For every δ = {a, b} ∈ B, write

Dδ
def
= {f ∈ F� | |a(f)| ≥ 1, |b(f)| ≥ 1} ⊆ F�.

We note that the action of S3 on B [cf. (i)] induces a transitive
action on the set [of subsets of F�] {Dδ}δ∈B. Then we have

F� =
⋃
δ∈B

Dδ.
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(iii) For any ε ∈ R≥0, we have

2−2 · J0∞(α) · J1∞(α) · J01(α) ≤ max{26+ε · J(α), 1}
≤ 29+ε · J0∞(α) · J1∞(α) · J01(α).

(iv) Suppose that | · | is nonarchimedean, i.e., that for any x ∈ F , it
holds that |x + 1| ≤ max{|x|, 1}. [Thus, for any x ∈ F such that
|x| < 1, it holds that |x+ 1| = 1.] Then we have

max{J(α), 1} = J0∞(α) · J1∞(α) · J01(α).

Proof. First, we consider assertion (i). To verify assertion (i), it suffices to
show that B = B′. [Indeed, it follows from this equality that �B = 6. Thus,
to verify that φ is bijective, it suffices to show that φ is surjective. But this
surjectivity follows immediately from the equality B = B′ and the various
definitions involved.] The inclusion B′ ⊆ B follows immediately from the
various definitions involved. Thus, it suffices to verify the inclusion B ⊆ B′.
First, we observe that A is the [disjoint] union of the following sets:

A0∞
def
= {z, z−1}, A1∞

def
= {1−z, (1−z)−1}, A01

def
= {z·(z−1)−1, (z−1)·z−1}.

Let δ ∈ B. Note that [as is easily verified] δ /∈ {A0∞, A1∞, A01}. Thus, we
may write

δ = {a, b}
— where the pair (a, b) satisfies precisely one of the following three condi-
tions:

(1) a ∈ A0∞, b ∈ A1∞, (2) a ∈ A1∞, b ∈ A01, (3) a ∈ A01, b ∈ A0∞.

On the other hand, in each of these three cases, one verifies immediately
that the condition

A = {a, a−1, b, b−1,−ab,−(ab)−1}
implies that there are precisely two possibilities for δ, and, moreover, that
these two possibilities are ∈ B′, as desired. This completes the proof of
assertion (i).

Next, we consider assertion (ii). Assertion (ii) follows immediately from
the following claim:

Claim 1.6A: For f ∈ F�, δ ∈ B, write δ(f)
def
= φ(δ)(f).

Suppose that it holds that

|δ(f)| = max
ε∈B

{|ε(f)|}.
Then we have f ∈ Dδ.

Let us verify Claim 1.6A. Write δ = {a, b}. Suppose that f /∈ Dδ. Then we
may assume without loss of generality that |a(f)| < 1. Thus, we have

|δ(f)| = |a(f)| · |b(f)| < |b(f)|.
On the other hand, since we have |b(f)| ∈ {ε(f)}ε∈B [cf. the latter portion
of assertion (i), i.e., the fact that φ is a bijection], we obtain a contradiction.
Therefore, we conclude that f ∈ Dδ. This completes the verification of
Claim 1.6A, hence also of assertion (ii).
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Next, we consider assertions (iii) and (iv). First, we observe that, in
assertion (iii), we may assume without loss of generality, that ε = 0. Write

D
def
= D{1−z,z·(z−1)−1} = {f ∈ F� | |f | ≥ |f − 1| ≥ 1} ⊆ F�.

Then we observe that

F� =
⋃

σ∈S3

(σ · D)

[cf. assertion (ii)], and that for α ∈ F�, σ ∈ S3, we have

J0∞(α) · J1∞(α) · J01(α) = J0∞(σ · α) · J1∞(σ · α) · J01(σ · α),
J(α) = J(σ · α)

[cf. the fact discussed in the proof of Lemma 1.3, (i); Definition 1.4; the
equality “A = S3 · z” discussed in assertion (i); the manifest invariance
of J(α) with respect to the transformations α �→ 1 − α, α �→ α−1, which
correspond to a pair of generators of S3]. Thus, to verify assertions (iii) and
(iv), we may assume without loss of generality that α ∈ D. Then observe
that J0∞(α) = |α| ≥ 1, J1∞(α) = |α − 1| ≥ 1, J01(α) = |α| · |α − 1|−1 ≥ 1,
hence that

J0∞(α) · J1∞(α) · J01(α) = |α|2 (≥ 1).

Now let us verify assertion (iii). The inequality

J0∞(α) · J1∞(α) · J01(α) ≤ 22 ·max{26 · J(α), 1}
follows immediately from Lemma 1.5. On the other hand, the inequality

max{26 · J(α), 1} ≤ 29 · J0∞(α) · J1∞(α) · J01(α)
follows immediately from the following computation:

J(α) = |α(α− 1) + 1|3 · |α|−2 · |α− 1|−2

≤ 23 · |α|−2 · |α− 1|−2 ·max{|α|3 · |α− 1|3, 1}
= 23 · |α| · |α− 1| ≤ 23 · |α|2 = 23 · J0∞(α) · J1∞(α) · J01(α).

— where we apply the easily verified fact that |x + 1|3 ≤ 23 · max{|x|3, 1}
for x ∈ F . This completes the proof of assertion (iii).

Finally, let us verify assertion (iv). First, observe that it follows immedi-
ately from our assumption that | · | is nonarchimedean that

D = {f ∈ F� | |f | = |f − 1|}.
Suppose that |α| = |α − 1| = 1 (respectively, |α| = |α − 1| > 1). Then we
have

J(α) = |α(α− 1) + 1|3 ≤ (max{|α| · |α− 1|, 1})3 = 1 = |α|2

(respectively, J(α) = |α(α− 1) + 1|3 · |α|−4 = |α|6 · |α|−4 = |α|2).
Thus, we conclude that

max{J(α), 1} = |α|2 = J0∞(α) · J1∞(α) · J01(α),
as desired. This completes the proof of assertion (iv). �
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Definition 1.7. Let Q be an algebraic closure of Q, F ⊆ Q a number field,
E an elliptic curve over F . Recall that E is isomorphic over Q to the elliptic
curve defined by an equation

y2 = x(x− 1)(x− λ)

— where λ ∈ Q
�
[cf. [Silv1], Chapter III, Proposition 1.7, (a)]. Recall

further that the j-invariant j(E) of E satisfies

j(E) = 28 (λ
2−λ+1)3

λ2(λ−1)2
(∈ F )

[cf. [Silv1], Chapter III, Proposition 1.7, (b)], and that the symmetric group
on 3 letters S3 admits a natural faithful action on the projective line P1

Q

over Q, hence also on the set of Q-rational points (P1
Q \{0, 1,∞})(Q)

∼→ Q
�
.

For � ∈ {non, arc}, we shall write

hS-tor
� (E)

def
=

∑
σ∈S3

htor� (σ · λ),

hS-tor(E)
def
= hS-tor

non (E) + hS-tor
arc (E)

[cf. Remark 1.1.1] and refer to hS-tor(E) as the symmetrized toric height
of E. We shall also write hS-tor

� (E) for hS-tor(E). One verifies easily that

hS-tor
non (E), hS-tor

arc (E), hS-tor(E) do not depend on the choice of “λ” [cf. the
proof of [Silv1], Chapter III, Proposition 1.7, (c)].

Remark 1.7.1. One verifies easily [cf. Remark 1.1.1] that for � ∈ {non, arc,
�}, the quantity hS-tor

� (E) is unaffected by passage to a finite extension of
the base field F of E.

Remark 1.7.2. It follows immediately from Lemma 1.3, (i), that for � ∈
{non, arc,�}, we have

hS-tor
� (E) =

∑
σ∈S3

h�(σ · λ).

Proposition 1.8. (Comparison between hS-tor
� (E) and h�(j(E))) In

the notation of Definition 1.7, the following hold:

(i) 0 ≤ hS-tor
non (E)− hnon(j(E)) ≤ 8 log 2.

(ii) −11 log 2 ≤ hS-tor
arc (E)− harc(j(E)) ≤ 2 log 2.

Proof. If v ∈ V(F ), then it is well-known that || · ||v satisfies the conditions
(i), (ii), and (iii) of Definition 1.4, and, moreover, that, if v ∈ V(F )non, then
|| · ||v is nonarchimedean in the sense of Lemma 1.6, (iv). Observe that,
in the remainder of the proof, we may assume without loss of generality
that, in the situation of Definition 1.7, λ ∈ F� [cf. Remark 1.7.1]. In the
following, for v ∈ V(F ), we shall write J(λ)v, J0∞(λ)v, J1∞(λ)v, J01(λ)v for
the “J(α)”, “J0∞(α)”, “J1∞(α)”, “J01(α)” of Definition 1.4, where we take
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· “F” to be F ;
· “α” to be λ;

· “| · |” to be || · ||v.
Here, we observe that, for � ∈ {non, arc}, we have

hS-tor
� (E) = 2 · htor� (λ) + 2 · htor� (1− λ) + 2 · htor� (λ · (λ− 1)−1)

[cf. Lemma 1.3, (i); the set “A” of Lemma 1.6, (i)].
First, we consider assertion (i). It follows from Lemma 1.6, (iv), that

[F : Q] · hS-tor
non (E) =

∑
v∈V(F )non

[Fv : Qpv ] · log(J0∞(λ)v · J1∞(λ)v · J01(λ)v)

=
∑

v∈V(F )non

[Fv : Qpv ] · logmax{J(λ)v, 1}.

Thus, to verify assertion (i), it suffices to show that, for every v ∈ V(F )non

lying over 2, it holds that

0 ≤ logmax{J(λ)v, 1} − logmax{2−8 · J(λ)v, 1} ≤ 8 log 2

[cf. the equality 2−8 · J(λ)v = ||j(E)||v]. The first inequality follows imme-
diately from the inequality J(λ)v ≥ 2−8 · J(λ)v. Next, we verify the second
inequality. If J(λ)v ≤ 1, then

logmax{J(λ)v, 1} − logmax{2−8 · J(λ)v, 1} = 0 − 0 ≤ 8 log 2

Thus, we may assume that J(λ)v > 1, hence that max{J(λ)v, 1} = J(λ)v.
In particular, if 2−8 · J(λ)v > 1 (respectively, 2−8 · J(λ)v ≤ 1), then we have

log J(λ)v − logmax{2−8 · J(λ)v, 1} = − log(2−8) = 8 log 2

(respectively,

log J(λ)v − logmax{2−8 · J(λ)v, 1} = log J(λ)v ≤ 8 log 2).

This completes the verification of the second inequality, hence also of asser-
tion (i).

Next, we consider assertion (ii). Observe that

[F : Q] · hS-tor
arc (E) =

∑
v∈V(F )arc

[Fv : R] · log(J0∞(λ)v · J1∞(λ)v · J01(λ)v).

Assertion (ii) then follows immediately from Lemma 1.6, (iii) — where we
take the “ε” of Lemma 1.6, (iii), to be 2 [cf. the equality 28 · J(λ)v =
||j(E)||v]. �

Proposition 1.9. (Comparison between hnon(j(E)) and harc(j(E))) In
the notation of Definition 1.7, suppose that Q(λ) is mono-complex. [Here,
note that the fact that Q(λ) is mono-complex does not depend on the choice
of “λ” [cf. the set “A” of Lemma 1.6, (i)].] Then the following hold:

(i) hS-tor
arc (E) ≤ hS-tor

non (E).

(ii) harc(j(E)) ≤ hnon(j(E)) + 19 log 2.

(iii) If C ∈ R, then the element j(E) ∈ Q is completely determined up
to a finite number of possibilities by the condition hnon(−) ≤ C.
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Proof. Assertion (i) follows immediately from Lemma 1.3, (iii), and the
various definitions involved. Assertion (ii) follows from assertion (i) and
Proposition 1.8, (i), (ii). Finally, we consider assertion (iii). It follows from
assertion (ii) [cf. also Definition 1.1, (i)] that

h(j(E)) = hnon(j(E)) + harc(j(E)) ≤ 2hnon(j(E)) + 19 log 2.

Thus, assertion (iii) follows immediately from Northcott’s theorem, i.e., the
well-known fact that the set of algebraic numbers of bounded degree and
bounded height is finite [cf. [BG], Theorem 1.6.8]. �

Proposition 1.10. (Comparison between h(j(E)) and hFal(E), I) Let
F be a number field; E an elliptic curve over F that has semi-stable re-
duction over OF . Then, in the notation of Definitions 1.1, (i); 1.7 [cf.
also the discussion entitled “Curves” in §0], we have

0 ≤ 1
12 · h(j(E))− hFal(E) ≤ 1

2 · log(1 + h(j(E))) + 2.071.

Proof. This follows immediately from [Lbr], Proposition 3.1 [and the sur-
rounding discussion]. �

Remark 1.10.1. In the notation of Proposition 1.10, we observe that

(a) the normalized degree [cf. [IUTchIV], Definition 1.9, (i)] of the [ef-
fective] arithmetic divisor determined by the q-parameters of E at
the elements of V(F )non

coincides with

(b) hnon(j(E)).

Indeed, this follows immediately from [Silv1], Chapter VII, Proposition 5.5;
the discussion at the beginning of [Silv2], Chapter V, §5. Moreover, we ob-
serve that both (a) and (b) are unaffected by passing to finite extensions of
the number field F [cf. [GenEll], Remark 3.3.1]. In particular, the assump-
tion [cf. the statement of Proposition 1.10] that E has semi-stable reduction
over OF is, in fact, inessential.

Lemma 1.11. (Linearization of logarithms) Let a ∈ R>0 be a positive
real number. Then we have

0 ≤ a− log(a)− 1.

In particular, [by taking “a” to be a · (1 + x)] we have

log(1 + x)− a · x ≤ a− log(a)− 1

for all nonnegative real x ∈ R≥0.

Proof. Lemma 1.11 is well-known and entirely elementary. �
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Proposition 1.12. (Comparison between h(j(E)) and hFal(E), II) Let
ξ ∈ R>0 be a positive real number. Write

C(ξ)
def
= 1

2 · { ξ
6(1+ξ) − log ξ

6(1+ξ) − 1}+ 2.071.

Then, in the notation of Proposition 1.10, we have

1
12(1+ξ) · h(j(E))− hFal(E) ≤ C(ξ).

Proof. Indeed, we have

1
12(1+ξ) · h(j(E))− hFal(E)

=
{

1
12 · h(j(E))− hFal(E)

}
− ξ

12(1+ξ) · h(j(E))

≤ 1
2 ·

{
log(1 + h(j(E)))− ξ

6(1+ξ) · h(j(E))
}
+ 2.071 ≤ C(ξ)

— where the first (respectively, second) inequality follows from Proposition

1.10 (respectively, Lemma 1.11, where we take “a” to be ξ
6(1+ξ) and “x” to

be h(j(E))). �

Definition 1.13. Let κ ≤ 1 be a positive real number; Σ a finite subset
of V(Q) such that V(Q)arc ⊆ Σ. Write Σ ⊆ V(Q) for the inverse image of
Σ ⊆ V(Q) via the natural restriction map V(Q) � V(Q). Recall the set of
rational functions “A” of Lemma 1.6, (i). Then we shall write

KΣ(κ)
def
= {x ∈ Q

� | min
w∈Σ

min
a∈A

{||a(x)||w} ≥ κ} ⊆ Q
�

[cf. the discussion entitled “Numbers” in §0] and refer to KΣ(κ) as a com-

pactly bounded subset of Q
�
. Thus, the subset KΣ(κ) ⊆ Q

�
is stabilized by

the natural action of S3 on Q
�
[cf. Lemma 1.6, (i)].

Corollary 1.14. (Upper bounds for hnon(j(E))) In the notation of Propo-
sition 1.12, let l be a prime number. Suppose that E admits an l-cyclic
subgroup scheme [cf. [GenEll], Lemma 3.5], and that l is prime to the lo-
cal heights [cf. [GenEll], Definition 3.3] of E at each of its places of [bad]
multiplicative reduction [a condition that is satisfied, for instance, if l is >
these local heights]. Then the following hold:

(i) We have

l
12(1+ξ) · hnon(j(E)) ≤ hFal(E) + 1

2 log(l) + C(ξ).

In particular, by applying the first inequality of Proposition 1.10, we
obtain that

l−(1+ξ)
12(1+ξ) · hnon(j(E)) ≤ 1

12 · harc(j(E)) + 1
2 log(l) + C(ξ).
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(ii) In the notation of Definitions 1.7, 1.13, suppose that

λ ∈ KΣ(κ).

[Note that the issue of whether or not λ ∈ KΣ(κ) does not depend on
the choice of the particular element “λ” within the S3-orbit of “λ”
[cf. the final portion of Definition 1.13].] Then we have

l−(1+ξ)
12(1+ξ) · hnon(j(E)) ≤ 1

2 log(l) + C(ξ)− 1
4 log(κ) +

11
12 log(2).

Suppose, moreover, that l ≥ 1015. Then, by taking ξ to be 1, we
obtain that

hnon(j(E)) ≤ 24
l−2{1

2 log(l) + C(1)− 1
4 log(κ) +

11
12 log(2)}

≤ 24
l−2{1

2 log(l) + 2.86− 1
4 log(κ) + 0.64}

≤ 5 · 10−13 − 6.01 · 10−15 log(κ)

— where we apply the estimates log(l)
l−2 ≤ 3.46 · 10−14, 6

l−2 ≤ 6.01 ·
10−15, 11

12 log(2) ≤ 0.64, and C(1) ≤ 2.86.

(iii) Suppose that Q(λ) is mono-complex. Then we have

l−2(1+ξ)
12(1+ξ) · hnon(j(E)) ≤ 1

2 log(l) + C(ξ) + 19
12 log(2).

Suppose, moreover, that l ≥ 1015. Then, by taking ξ to be 1, we
obtain that

hnon(j(E)) ≤ 24
l−4{1

2 log(l) + C(1) + 19
12 log(2)}

≤ 24
l−4{1

2 log(l) + 2.86 + 1.1}
≤ 4.16 · 10−13 + 0.96 · 10−13 = 5.12 · 10−13

— where we apply the estimates log(l)
l−4 ≤ 3.46 · 10−14, 24

l−4 ≤ 2.41 ·
10−14, 19

12 log(2) ≤ 1.1, and C(1) ≤ 2.86.

Proof. First, we consider assertion (i). Let H ⊆ E be an l-cyclic subgroup

scheme. Write EH
def
= E/H. [In particular, EH is isogenous to E, hence

has semi-stable reduction at all v ∈ V(F )non.] Thus, by applying the same
arguments as those applied in the proof of [GenEll], Lemma 3.5, we obtain
the following equality:

hnon(j(EH)) = l · hnon(j(E))

[cf. also Remark 1.10.1]. On the other hand, it follows from the discus-
sion entitled “Curves” in §0; [Falt], Lemma 5, that we have the following
inequality:

hFal(EH) ≤ hFal(E) + 1
2 log(l).

In light of the above equality and inequality, assertion (i) follows from Propo-
sition 1.12.

Next, we consider assertion (ii). Note that, since λ ∈ KΣ(κ), for each
v ∈ V(Q(λ))arc, we have:

max{||λ||v, ||λ||−1
v } ≤ κ−1; max{||λ− 1||v, ||λ− 1||−1

v } ≤ κ−1;

max{||λ− 1||v · ||λ||−1
v , ||λ||v · ||λ− 1||−1

v } ≤ κ−1.
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Thus, we conclude from Proposition 1.8, (ii), that

harc(j(E))− 11 log(2) ≤ hS-tor
arc (E)

≤ 1
[Q(λ):Q]

∑
v∈V(Q(λ))arc

[Q(λ)v : R] · log(κ−3)

= log(κ−3).

Assertion (ii) then follows immediately from the second inequality of asser-
tion (i). Finally, assertion (iii) follows immediately from the second inequal-
ity of assertion (i) and Proposition 1.9, (ii). �

2. Auxiliary Numerical Results

In the present section, we recall

• a numerical result concerning the j-invariants of certain special el-
liptic curves over fields of characteristic zero;

• certain effective versions of the prime number theorem.

These results will be applied in §5.

Proposition 2.1. (j-invariants of arithmetic elliptic curves) Let F
be a field of characteristic zero; E an elliptic curve over F . Suppose that the
hyperbolic curve obtained by removing the origin from E is “arithmetic”,
i.e., fails to admit an F -core [cf. [CanLift], Remark 2.1.1]. Then the
j-invariant j(E) of E coincides with one of the following:

• 488095744
125 = 214 · 313 · 5−3,

• 1556068
81 = 22 · 733 · 3−4,

• 1728 = 26 · 33,
• 0.

Proof. Proposition 2.1 follows immediately from [Sijs], Table 4 [cf. also
[Sijs], Lemma 1.1.1; [CanLift], Proposition 2.7]. �

Proposition 2.2. (Effective versions of the prime number theorem)
For x ∈ R≥2, write

π(x)
def
= �{p ∈ Primes | p ≤ x};

θ(x)
def
=

∑
p∈Primes; p≤x

log(p).

Set

ηprm
def
= 5 · 1020; ξprm

def
= 1015.

Then the following hold:
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(i) For any real number x ≥ ηprm, it holds that

π(x) ≤ 1.022 · x
log(x)

[cf. [IUTchIV], Proposition 1.6].

(ii) For any real number x ≥ ξprm, it holds that

|θ(x)− x| ≤ 0.00071 · x
In particular, if A is a finite subset of Primes, and we write

θA
def
=

∑
p∈A

log(p)

[where we take the sum to be 0 if A = ∅], then there exists a prime
number p /∈ A such that

p ≤ (1− 0.00071)−1 · (θA + ξprm) ≤ 1.00072 · (θA + ξprm)

[cf. [IUTchIV], Proposition 2.1, (ii)].

Proof. First, we consider assertion (i). Observe that log(x) ≥ log(ηprm) ≥
47.66 ≥ 1.17

0.0246 . Thus, it holds that

π(x) ≤ x

log(x)−1− 1.17
log(x)

≤ x
log(x)−1.0246

[cf. [Ax1], Corollary 3.4; [Ax2]]. Therefore, we conclude that

1.022 · x
log(x) ≥ x

log(x)−1.0246 ≥ π(x).

Next, we consider assertion (ii). Observe that log(x) ≥ log(ξprm) ≥ 34.53.
Then since 0.0242269

log(x) ≤ 0.00071, assertion (ii) follows immediately from [RS],

Theorem 7. �

3. μ6-Theory for [EtTh]

In the present section, we introduce a slightly modified version of the
notion of an étale theta function of standard type [cf. Definitions 3.3, 3.5], a
notion which plays a central role in the theory developed in [EtTh]. We then
proceed to discuss how the adoption of such a modified version of the notion
of an étale theta function of standard type affects the theory developed in
[EtTh].

We begin with certain elementary observations concerning roots of unity
and theta functions.

Lemma 3.1. (Group actions on primitive roots of unity) Let n ≥ 2
be an even integer; k an algebraically closed field of characteristic zero.
Write μ×

2n ⊆ k× for the set of primitive 2n-th roots of unity in k;
Aut(μ×

2n) for the group of automorphisms of the set μ×
2n; Γ− ⊆ Aut(μ×

2n)
(respectively, Γ− ⊆ Aut(μ×

2n)) for the subgroup of cardinality two generated
by the automorphism of μ×

2n defined as follows: ∀ζ ∈ μ×
2n,

ζ �→ −ζ (respectively, ζ �→ ζ−1).
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[Note that since n is even, it follows that −ζ ∈ μ×
2n.] Then the following

conditions are equivalent:

(1) n ∈ {2, 4, 6}.
(2) The action of Γ− × Γ− on μ×

2n is transitive.

Proof. The fact that (1) ⇒ (2) is immediate from the definitions. Thus, it
remains to verify that (2) ⇒ (1). First, we observe that the transitivity of
the action of the group Γ− × Γ− [whose cardinality is four] on μ×

2n implies
that �(μ×

2n) ≤ 4. In light of this observation, one verifies easily that

n ∈ {1, 2, 3, 4, 5, 6}.
Since n is even, we thus conclude that n ∈ {2, 4, 6}. This completes the
proof of Lemma 3.1. �

Proposition 3.2. (Theta values at primitive 12-th roots of unity) In

the notation of [EtTh], Proposition 1.4: Suppose that K̈ contains a primitive
12-th root of unity ζ12. Thus, we note that the set of primitive 12-th roots
of unity in K̈ coincides with the set

{ζ12, ζ512, ζ712, ζ1112} ⊆ K̈.

Recall the theta function Θ̈ of [EtTh], Proposition 1.4,

Θ̈(U) = q
− 1

8
X ·

∑
n∈Z

(−1)n · q
1
2
(n+ 1

2
)2

X · Ü2n+1,

which satisfies the relations Θ̈(Ü) = −Θ̈(Ü−1) = −Θ̈(−Ü) [cf. [EtTh],
Proposition 1.4, (ii)]. Then the following hold:

(i) We have

Θ̈(ζ12), Θ̈(ζ512), Θ̈(ζ712), Θ̈(ζ1112 ) ∈ {Θ̈(ζ12), −Θ̈(ζ12)}.

(ii) We have Θ̈(ζ12) ∈ O×
K̈
.

Proof. Assertion (i) follows immediately from Lemma 3.1 and [EtTh], Propo-
sition 1.4, (ii). Assertion (ii) follows immediately from the fact that ζ12 −
ζ−1
12 ∈ O×

K̈
[cf. the equality −(ζ12 − ζ−1

12 )2 = 1]. �

Remark 3.2.1. Lemma 3.1 and Proposition 3.2 arose from observations
due to Porowski. These observations are, in some sense, the starting point
of the theory developed in the present paper.

In the remainder of the present §3, we consider a slightly modified version
of [EtTh] based on “étale theta functions of μ6-standard type”.
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Definition 3.3. In the notation of [EtTh], Definition 1.9, suppose that K
contains a primitive 12-th root of unity. Note that the primitive 12-th roots
of unity in K determine precisely four 12-torsion points

{τ1, τ2, τ3, τ4}
of [the underlying elliptic curve of] Ẋ whose restriction to the special fiber
lies in the interior of [i.e., avoids the nodes of] the unique irreducible com-
ponent of the special fiber.

(i) We shall refer to either of the following four sets of values [cf. [EtTh],
Proposition 1.4, (iii)] of η̈Θ,Z

η̈Θ,Z|τ1 , η̈Θ,Z|τ2 , η̈Θ,Z|τ3 , η̈Θ,Z|τ4 ⊆ K×

as a μ6-standard set of values of η̈Θ,Z.

(ii) If η̈Θ,Z satisfies the property that the unique value ∈ K× [cf. Propo-
sition 3.2, (i); Remark 4.2.3, (vi); [IUTchII], Remark 2.5.1, (ii)] of
maximal order [i.e., relative to the valuation on K] of some μ6-
standard set of values of η̈Θ,Z is equal to ±1, then we shall say that
η̈Θ,Z is of μ6-standard type.

Remark 3.3.1. By applying Definition 4.3, together with a similar argu-
ment to the argument applied in the proof of [EtTh], Theorem 1.10, one may
prove a “μ6-version” of [EtTh], Theorem 1.10, i.e., the assertion obtained
by replacing, in [EtTh], Theorem 1.10, (iii),

“odd” −→ “arbitrary”

[cf. Proposition 3.2, (ii); [IUTchIV], Remark 1.10.6, (ii)]. Note that, in the
notation of [EtTh], Theorem 1.10,

the dual graphs of the special fibers of the various coverings
of Cα, Cβ are somewhat more complicated in the case where
p ∈ {2, 3}.

On the other hand, since one may still reconstruct the dual graphs group-
theoretically, this will not affect the proof of the μ6-version of [EtTh], The-
orem 1.10, in any significant way.

Definition 3.4. Let l ≥ 1 be an integer coprime to 6. In the notation of
[EtTh], §1, suppose that

• the residue characteristic of K is arbitrary;

• K = K̈;

• K contains a primitive 12-th root of unity ζ12

[cf. [EtTh], Definition 1.7, and the preceding discussion; [EtTh], Definition
2.5].
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(i) Suppose, in the situation of [EtTh], Definitions 2.1, 2.3, that the

quotient Π
ell
X � Q factors through the natural quotient ΠX � Z

determined by the quotient Πtp
X � Z discussed at the beginning of

[EtTh], §1, and that the choice of a splitting ofDx → GK [cf. [EtTh],
Proposition 2.2, (ii)] that determined the covering X log → X log is
compatible with the “{±1}-structure” of the μ6-version of Theorem
1.10, (iii), of Remark 3.3.1. Then we shall say that the orbicurve of
type (1, l-tors) (respectively, (1, l-torsΘ); (1, l-tors)±; (1, l-torsΘ)±)
under consideration is of type (1,Z/lZ) (respectively, (1, (Z/lZ)Θ);
(1,Z/lZ)±; (1, (Z/lZ)Θ)±).

(ii) In the notation of the above discussion and the discussion at the end
of [EtTh], §1, we shall refer to a smooth log orbicurve isomorphic to
the smooth log orbicurve

Ẋ
log

(respectively, Ẋ
log

; Ċ
log

; Ċ
log

)

obtained by taking the composite of the covering

X log (respectively, X log;C log;C log)

of C log with the covering Ċ log → C log, as being of type (1,μ2×Z/lZ)
(respectively, (1,μ2×(Z/lZ)Θ); (1,μ2×Z/lZ)±; (1,μ2×(Z/lZ)Θ)±).

Remark 3.4.1. In the “μ6-version” of [EtTh], Remark 2.5.1, the portion

concerning “Ċ” should be eliminated.

Definition 3.5. In the notation of Definition 3.3 and the discussion preced-
ing of [EtTh], Definition 2.7, if η̈Θ,Z is of μ6-standard type, then we shall also
refer to η̈Θ,l·Z, η̈Θ,l·Z, η̈Θ,l·Z×μ2 , η̈Θ,l·Z×μ2 , η̈Θ,Z×μ2 as being of μ6-standard

type.

Remark 3.5.1. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks
3.3.1, 3.4.1], the exposition of [EtTh], §1, §2, goes through without essential
change under the assumptions stated in the first paragraph of Definition 3.4,
with the following exception: In the “μ6-versions” of [EtTh], Proposition
2.12; [EtTh], Remark 2.12.1, the portions concerning the hyperbolic orbi-
curves whose notation contains a “ ˙ ” [i.e., a single “overline dot”] should
be eliminated.

Remark 3.5.2. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks 3.3.1,
3.4.1, 3.5.1], the exposition of [EtTh], §3, §4, goes through without essential
change under the assumptions stated in the first paragraph of Definition 3.4,
with the following exception: In the “μ6-version” of [EtTh], Example 3.9,
the portions concerning the hyperbolic orbicurves whose notation contains
a “ ˙ ” [i.e., a single “overline dot”] should be eliminated.
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Remark 3.5.3. By applying Definitions 3.3, 3.4, 3.5 [cf. also Remarks
3.3.1, 3.4.1, 3.5.1, 3.5.2], the exposition of [EtTh], §5, goes through with-
out essential change under the assumptions stated in the first paragraph of
Definition 3.4, with the following exceptions:

(i) Throughout the “μ6-version” of [EtTh], §5, the portions concerning the
hyperbolic orbicurves whose notation contains a “ ˙ ” [i.e., a single “overline
dot”] should be eliminated.

(ii) In the “μ6-version” of the statement and proof of [EtTh], Proposition

5.3, as well as the preceding discussion, the notation “Ÿ” should be replaced
by “Y”.

(iii) In the “μ6-version” of [EtTh], Theorem 5.7, as well as the “μ6-
version” of the remainder of [EtTh], §5, the following modification should
be made:

“Θ̈(
√−1)−1 · Θ̈” −→ “Θ̈(ζ12)

−1 · Θ̈”.

4. μ6-Theory for [IUTchI-III]

In the present section, we introduce a slightly modified version of the
notion of initial Θ-data [cf. Definitions 4.1], a notion which plays a central
role in the theory developed in [IUTchI-IV]. We then proceed to discuss how
the adoption of such a modified version of the notion of initial Θ-data affects
the theory developed in [IUTchI-III].

Definition 4.1. We shall refer to as μ6-initial Θ-data any collection of data

(F/F, XF , l, CK , V, Vbad
mod, ε)

satisfying the following conditions:

• [IUTchI], Definition 3.1, (a), (c), (d);

• The “μ6-version” of [IUTchI], Definition 3.1, (b), i.e., the condition
obtained by replacing, in [IUTchI], Definition 3.1, (b),

“odd” −→ “arbitrary”;

• The “μ6-versions” of [IUTchI], Definition 3.1, (e), (f), i.e., the con-
ditions obtained by replacing, in [IUTchI], Definition 3.1, (e), (f),

“[EtTh], Definition 2.5, (i)” −→ “Definition 3.4, (i)”

[cf. Remark 4.1.1 below].
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Remark 4.1.1. In the notation of Definition 4.1, write EF for the elliptic
curve over F determined by XF [so XF ⊆ EF ]. Then since

√−1 ∈ F [cf.
[IUTchI], Definition 3.1, (a)], and, moreover, the 3-torsion points of EF

are rational over F [cf. [IUTchI], Definition 3.1, (b)], we conclude that F
contains a primitive 12-th root of unity ζ12 [cf. the conditions in the first
display of Definition 3.4].

Remark 4.1.2. By applying Definitions 3.3, 3.4, 3.5, 4.1 [cf. also Remarks
3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1], the exposition of [IUTchI], §3, goes
through without essential change, with the following exceptions: In the “μ6-
version” of [IUTchI], Example 3.2, the following modifications should be
made:

• In [IUTchI], Example 3.2, (ii),

“
√−1” −→ “ζ12”;

• In [IUTchI], Example 3.2, (iv),

“
√−qv” −→ “ζ12

√
qv”;

“μ2l(TX
v
)-multiple” −→ “μ6l(TX

v
)-multiple”;

“μ2l(−)-orbit” −→ “μ6l(−)-orbit”.

• In [IUTchI], Example 3.2, (v),

“μ2l(−)-orbit” −→ “μ6l(−)-orbit”.

Remark 4.1.3. By applying Definitions 3.3, 3.4, 3.5, 4.1 [cf. also Remarks
3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2], the exposition of [IUTchI], §4,
§5, §6, goes through without essential change, with the following exceptions:
In the “μ6-version” of [IUTchI], Example 4.4, the following modifications
should be made:

• In [IUTchI], Example 4.4, (i),

“the unique torsion point of order 2”

−→ “a torsion point of order 6”.

Thus, throughout the μ6-version of [IUTchI], Example 4.4, (i) —
and indeed throughout the remainder of the “μ6-version” of [IUTchI-
IV] — “μ−” is to be regarded as being allowed to vary among the
torsion points of order 6 that satisfy the condition stated in the
initial definition of “μ−”, with the following exception: In [IUTchI],
Remark 5.2.3, the notation “μ−” is to be understood in the original
“non-μ6” sense, i.e., as the unique torsion point of order 2 discussed
in the original “non-μ6” version of [IUTchI], Example 4.4, (i).

• In [IUTchI], Example 4.4, (i),

“evaluation points” −→ “μ6l-evaluation points”;

“evaluation sections” −→ “μ6l-evaluation sections”;

“μ2l-orbit” −→ “μ6l-orbit”.
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Definition 4.2. Suppose that we are in the situation of [IUTchII], Remark
1.4.1 [cf. also Remark 4.2.2 below]. Write

τ ∈ Xk(k)

for a torsion point of order 6 whose closure in any stable model ofXk overOk

intersects the same irreducible component of the special fiber of the stable
model as the zero cusp [cf. Remark 4.1.3]. Since k contains a primitive
12l-th root of unity [cf. Remark 4.2.2 below], it follows from the definition
of an “étale theta function of μ6-standard type” [cf. Definitions 3.3, (ii);
3.5] that there exists a rational point

τ Ÿ ∈ Ÿ
k
(k)

such that τ Ÿ �→ τ . Write

Dτ ⊆ Πtp

Ÿ
k

for the decomposition group of τ Ÿ [which is well-defined up to Δtp

Ÿ
k

-conjugacy].

We shall refer to either of the pairs

(ιŸ ∈ Aut(Ÿ
k
), τ Ÿ ); (ιŸ ∈ Aut(Πtp

Ÿ
k

)/Inn(Δtp

Ÿ
k

), Dτ )

as a μ6-pointed inversion automorphism. Again, we recall from Definitions
3.3, (ii); 3.5, that

an “étale theta function of μ6-standard type” is defined pre-
cisely by the condition that its restriction to Dτ be a 2l-th
root of unity.

Remark 4.2.1. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3], the exposition of
the Abstract and Introduction of [IUTchII] goes through without essential
change, with the following exceptions:

(i) In the “μ6-version” of the Abstract of [IUTchII], the following modi-
fication should be made:

“2-torsion point” −→ “6-torsion point”.

(ii) In the “μ6-version” of the first display and the discussion immediately
following the first display of the Introduction of [IUTchII], the following
modifications should be made:

“
(√−1 ·

∑
m∈Z

q
1
2
(m+ 1

2
)2

v

)
” −→ “

(√−1 ·
∑
m∈Z

ζm+2
3 q

1
2
(m+ 1

2
)2

v

)
”;

“2-torsion point” −→ “6-torsion point −ζ3”;

“2l-th root of unity” −→ “6l-th root of unity”.



EXPLICIT ESTIMATES IN INTER-UNIVERSAL TEICHMÜLLER THEORY 29

(iii) In the “μ6-version” of the paragraph of the Introduction of [IUTchII]
that begins “Constant multiple rigidity”, the following modifications
should be made:

“[2-]torsion point” −→ “[6-]torsion point”;

“2l-th roots of unity” −→ “6l-th roots of unity”.

Remark 4.2.2. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3], the exposition
of [IUTchII], §1, goes through without essential change, with the following
exceptions:

(i) In the “μ6-version” of the discussion preceding [IUTchII], Definition
1.1, the following modifications should be made:

“odd prime number” −→ “prime number ≥ 5”;

“of odd residue” −→ “of arbitrary residue”;

“4l-th root” −→ “12l-th root”.

(ii) In the “μ6-version” of [IUTchII], Remark 1.12.2, (ii), the following
modifications should be made:

“the 2-torsion point “μ−” of [IUTchI], Example 4.4, (i)”

−→ “a 6-torsion point “τ” as in Definition 4.2”;

“the 2-torsion point “μ−” are reconstructed”

−→ “6-torsion points “τ” are reconstructed”.

(iii) In the “μ6-version” of [IUTchII], Remark 1.12.2, (iii), the following
modification should be made:

“where we recall that . . . is assumed to be”

−→ “where we assume, for simplicity, that . . . is”.

(iv) In the “μ6-version” of [IUTchII], Remark 1.12.4, the following mod-
ification should be made:

“ the point “μ−” ” −→ “ 6-torsion points “τ” ”.

Remark 4.2.3. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also Re-
marks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2], the exposition
of [IUTchII], §2, goes through without essential change, with the following
exceptions:

(i) In the “μ6-version” of [IUTchII], Corollary 2.4, (ii), (b), the following
modifications should be made:

“Dδ
μ−” −→ “Dδ

τ”;

“the torsion point “μ−” of Remark 1.4.1, (i), (ii)”
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−→ “some torsion point “τ” as in Definition 4.2”.

(ii) In the “μ6-version” of [IUTchII], Corollary 2.4, (ii), (c), the following
modifications should be made:

“Dδ
t,μ−” −→ “Dδ

t,τ”;

“[IUTchI], Example 4.4, (i)” −→ “Remark 4.1.3”;

“μ−-translate” −→ “τ -translate”.

(iii) In the “μ6-version” of [IUTchII], Corollary 2.5, (ii), the following
modifications should be made:

“Dδ
t,μ−” −→ “Dδ

t,τ”;

“yield μ2l-,” −→ “yield μ6l-,”.

(iv) In the “μ6-version” of [IUTchII], Corollary 2.5, (iii), the following
modification should be made:

“μ2l” −→ “μ6l”.

(v) In the “μ6-version” of [IUTchII], Remark 2.5.1, (i), the following
modification should be made:

“μ2l” −→ “μ6l”.

(vi) In the “μ6-version” of [IUTchII], Remark 2.5.1, (ii), the following
modification should be made:

“±√−1” −→ “±ζ±1
12 ”.

(vii) In the “μ6-version” of [IUTchII], Remark 2.5.1, (iii), the following
modification should be made:

“μ2l-orbit” −→ “μ6l-orbit”.

(viii) In the “μ6-version” of [IUTchII], Remark 2.5.2, (i), the following
modification should be made:

“Dγ1
t,μ−” −→ “Dγ1

t,τ”.

(ix) In the “μ6-version” of [IUTchII], Corollary 2.6, (ii), the following
modifications should be made:

“μ2l” −→ “μ6l”;

“Dδ
t,μ−” −→ “Dδ

t,τ”.

(x) In the “μ6-version” of [IUTchII], Remark 2.6.3, (i), the following
modification should be made:

“μ−-translates” −→ “τ -translates”.
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(xi) In the “μ6-version” of [IUTchII], Corollary 2.8, (i), the following
modifications should be made:

“Dδ
t,μ−” −→ “Dδ

t,τ”;

“yield μ2l-,” −→ “yield μ6l-,”.

(xii) In the “μ6-version” of [IUTchII], Corollary 2.8, (ii), the following
modification should be made:

“μ2l” −→ “μ6l”.

(xiii) In the “μ6-version” of [IUTchII], Corollary 2.9, (i), the following
modifications should be made:

“Dδ
t,μ−” −→ “Dδ

t,τ”;

“yield μ2l-,” −→ “yield μ6l-,”.

(xiv) In the “μ6-version” of [IUTchII], Corollary 2.9, (ii), the following
modification should be made:

“μ2l” −→ “μ6l”.

Remark 4.2.4. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2, 4.2.3], the
exposition of [IUTchII], §3, goes through without essential change, with the
following exceptions:

(i) In the “μ6-version” of [IUTchII], Corollary 3.5, (i), the following mod-
ification should be made:

“Dδ
t,μ−” −→ “Dδ

t,τ”.

(ii) In the “μ6-version” of [IUTchII], Corollary 3.5, (ii), the following
modifications should be made:

“(2l)l
�

” −→ “(6l)l
�

”;

“Ψ2l·ξ(MΘ∗ )” −→ “Ψ6l·ξ(MΘ∗ )”;
“ξ2l·N” −→ “ξ6l·N”;

“Dδ
t,μ−” −→ “Dδ

t,τ”;

“Ψ2l·ξ1(MΘ∗ ) = Ψ2l·ξ2(MΘ∗ )” −→ “Ψ6l·ξ1(MΘ∗ ) = Ψ6l·ξ2(MΘ∗ )”.

(iii) In the “μ6-version” of [IUTchII], Remark 3.5.1, (i), the following
modification should be made:

“Dδ
t,μ−” −→ “Dδ

t,τ”.

(iv) In the “μ6-version” of [IUTchII], Corollary 3.6, (ii), the following
modification should be made:

“Ψ2l·ξ(−)” −→ “Ψ6l·ξ(−)”.
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(v) In the “μ6-version” of [IUTchII], Definition 3.8, (ii), (iii), the following
modifications should be made:

“F2l·ξ(MΘ∗ )” −→ “F6l·ξ(MΘ∗ )”;
“FF2l·ξ(

†F
v
)” −→ “FF6l·ξ(

†F
v
)”;

“Ψ2l·ξ(−)” −→ “Ψ6l·ξ(−)”.

Remark 4.2.5. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2, 4.2.3, 4.2.4],
the exposition of [IUTchII], §4, goes through without essential change, with
the following exceptions: In the “μ6-version” of [IUTchII], Definition 4.9,
(ii), the following modifications should be made:

“2l-torsion subgroup” −→ “6l-torsion subgroup”;

“μ2l(
‡A)” −→ “μ6l(

‡A)”.

Remark 4.2.6. By applying Definitions 3.3, 3.4, 3.5, 4.1, 4.2 [cf. also
Remarks 3.3.1, 3.4.1, 3.5.1, 3.5.2, 3.5.3, 4.1.1, 4.1.2, 4.1.3, 4.2.2, 4.2.3, 4.2.4,
4.2.5], the exposition of [IUTchIII], §1, §2, §3, goes through without essential
change, with the following exceptions:

(i) In the “μ6-version” of [IUTchIII], Proposition 3.5, (ii), (c), the follow-
ing modification should be made:

“2l-torsion subgroup” −→ “6l-torsion subgroup”.

(ii) In the “μ6-version” of [IUTchIII], Remark 3.11.4, (i), the following
modification should be made:

“2l-th roots of unity” −→ “6l-th roots of unity”.

(iii) In the “μ6-version” of [IUTchIII], Fig. 3.4, the following modification
should be made:

“μ2l” −→ “μ6l”.

5. μ6-Theory for [IUTchIV]

In the present section, we first give explicit log-volume estimates for the
“μ6-version” of Θ-pilot objects [cf. Theorem 5.1; Corollary 5.2]. [We refer to
[IUTchIV], Theorem 1.10; [IUTchIV], Corollary 2.2, (ii), (iii), for the original
“non-μ6” versions of these results.] Theorem 5.1 follows directly from the
modified version of [IUTchI-III] discussed in §4 [cf. also §3], together with
certain estimates from §2, while Corollary 5.2 is obtained by combining
Theorem 5.1 with the theory of §1, §2. We then examine Corollary 5.2
in more detail in the case of mono-complex number fields; this yields an
effective version of the ABC inequality over mono-complex number fields [cf.
Theorem 5.3], as well as an effective version of a conjecture of Szpiro over the
field of rational numbers [cf. Theorem 5.4]. As an application, we compute
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an explicit integer n0 > 0 such that for any prime number p ≥ n0, the
Fermat equation xp + yp = zp does not have any positive integer solutions
[cf. Corollary 5.8], i.e., we give an alternative approach, via fundamentally
different techniques, to verifying an effective asymptotic version of “Fermat’s
Last Theorem”, as proven in [Wls]. We also apply the effective version of
the ABC inequality that we obtain to a generalized version of the Fermat
equation [cf. Corollary 5.9].

Theorem 5.1. (Log-volume estimates for the “μ6-version” of Θ-
pilot objects) Fix a collection of μ6-initial Θ-data [cf. Definition 4.1].
Suppose that we are in the situation of the “μ6-version” of [IUTchIII], Corol-
lary 3.12 [cf. Remark 4.2.6], and that the elliptic curve EF has good re-
duction at every place ∈ V(F )good∩V(F )non that does not divide 2·3·5·l. In
the notation of Definition 4.1, let us write dmod

def
= [Fmod : Q], (1 ≤) emod (≤

dmod) for the maximal ramification index of Fmod [i.e., of places ∈ Vnon
mod]

over Q, d∗mod
def
= 212 · 33 · 5 · dmod, e

∗
mod

def
= 212 · 33 · 5 · emod (≤ d∗mod), and

Fmod ⊆ Ftpd
def
= Fmod(EFmod

[2]) ⊆ F

for the “tripodal” intermediate field obtained from Fmod by adjoining the
fields of definition of the 2-torsion points of any model of EF ×F F over
Fmod [cf. [IUTchIV], Proposition 1.8, (ii), (iii)]. Moreover, we assume that
the (3 · 5)-torsion points of EF are defined over F , and that

F = Fmod(
√−1, EFmod

[2 · 3 · 5]) def
= Ftpd(

√−1, EFtpd
[3 · 5])

— i.e., that F is obtained from Ftpd by adjoining
√−1, together with the

fields of definition of the (3 ·5)-torsion points of a model EFtpd
of the elliptic

curve EF ×F F over Ftpd determined by the Legendre form of the Weier-
strass equation [cf., e.g., the statement of Corollary 5.2, below; [IUTchIV],
Proposition 1.8, (vi)]. [Thus, it follows from [IUTchIV], Proposition 1.8,
(iv), that EF

∼= EFtpd
×Ftpd

F over F , and from Definition 4.1 that l �= 5.]
If Fmod ⊆ F� ⊆ K is any intermediate extension which is Galois over Fmod,
then we shall write

d
F�
ADiv ∈ ADivR(F�)

for the effective arithmetic divisor determined by the different ideal of F�
over Q,

q
F�
ADiv ∈ ADivR(F�)

for the effective arithmetic divisor determined by the q-parameters of the

elliptic curve EF at the elements of V(F�)bad
def
= Vbad

mod ×Vmod
V(F�) ( �= ∅)

[cf. [GenEll], Remark 3.3.1],

f
F�
ADiv ∈ ADivR(F�)

for the effective arithmetic divisor whose support coincides with Supp(q
F�
ADiv),

but all of whose coefficients are equal to 1 — i.e., the conductor — and

log(dF�
v )

def
= degV(F�)v(d

F�
ADiv) ∈ R≥0; log(dF�

vQ
)

def
= degV(F�)vQ

(d
F�
ADiv) ∈ R≥0

log(dF�)
def
= deg(d

F�
ADiv) ∈ R≥0
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log(qv)
def
= degV(F�)v(q

F�
ADiv) ∈ R≥0; log(qvQ)

def
= degV(F�)vQ

(q
F�
ADiv) ∈ R≥0

log(q)
def
= deg(q

F�
ADiv) ∈ R≥0

log(fF�
v )

def
= degV(F�)v(f

F�
ADiv) ∈ R≥0; log(fF�

vQ
)

def
= degV(F�)vQ

(f
F�
ADiv) ∈ R≥0

log(fF�)
def
= deg(f

F�
ADiv) ∈ R≥0

— where v ∈ Vmod
def
= V(Fmod), vQ ∈ VQ = V(Q),V(F�)v

def
= V(F�) ×Vmod

{v}, V(F�)vQ
def
= V(F�)×VQ

{vQ} [cf. also [IUTchIV], Definition 1.9]. Here,
we observe that the various “log(q(−))’s” are independent of the choice of
F�, and that the quantity “| log(q)| ∈ R>0” defined in the μ6-version of

[IUTchIII], Corollary 3.12 [cf. Remark 4.2.6], is equal to 1
2l · log(q) ∈ R [cf.

the definition of “q
v
” in [IUTchI], Example 3.2, (iv)]. Moreover, suppose

that

l ≥ 1015.

Then one may take the constant “CΘ ∈ R” of the μ6-version of [IUTchIII],
Corollary 3.12 [cf. Remark 4.2.6], to be

l+1
4·| log(q)| ·

{
(1 + 12·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 4.08803 · e∗mod · l

− 1
6 · (1− 12

l2
) · log(q)

}
− 1

and hence, by applying the inequality “CΘ ≥ −1” of the μ6-version of
[IUTchIII], Corollary 3.12 [cf. Remark 4.2.6], conclude that

1
6 · log(q) ≤ (1 + 20·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 4.0881 · e∗mod · l
≤ (1 + 20·dmod

l ) · (log(dF ) + log(fF )) + 4.0881 · e∗mod · l.

Proof. Theorem 5.1 follows by applying a similar argument to the argument
applied in the proof of [IUTchIV], Theorem 1.10. In the present paper,
however, we replace some of the estimates applied in the proof of [IUTchIV],
Theorem 1.10, as follows:

• We replace the estimate “4(l+5)
l+1 ≤ 20

3 ” appearing in the final portion

of Step (v) of the proof of [IUTchIV], Theorem 1.10, by the estimate

4(l+5)
l+1 = 4 + 16

l+1 ≤ 4 + 100
l ≤ 4 + 10−13

— cf. our assumption that l ≥ 1015.

• We replace the estimate “l∗mod · log(s≤) ≤ 4
3 ·(e∗mod · l+ηprm)” appearing

in Step (viii) of the proof of [IUTchIV], Theorem 1.10, by the estimate

l∗mod · log(s≤) ≤ 1.022 · e∗mod · l
— cf. Proposition 2.2, (i); our assumption that l ≥ 1015, which implies the
estimate e∗mod · l ≥ 212 · 33 · 5 · 1015 ≥ ηprm = 5 · 1020.

• We replace the estimate

“1
3 · 4

3 · e∗mod · l ≥ 2 · 2 · 212 · 3 · 5 · l ≥ 2 · log(l) + 56”
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appearing in Step (viii) of the proof of [IUTchIV], Theorem 1.10, by the
estimate

10−5 · 1.022 · e∗mod · l ≥ (10−5 · 212 · 32 · 5) · 3l ≥ 3l ≥ 2 · log(l) + 56

— where the first (respectively, second; third) inequality follows from the
estimate 1.022 ≥ 1 (respectively, 212 · 32 · 5 ≥ 105; l ≥ max{56, log(l)}
[which is a consequence of our assumption that l ≥ 1015]).

In light of these [three] modifications, together with the estimate

(4 + 10−13 + 10−5) · 1.022 ≤ (4 + 2 · 10−5) · 1.022 ≤ 4.08803,

we conclude that one may take the constant “CΘ ∈ R” to be the constant
stated in Theorem 5.1.

Finally, by replacing the estimate “(1 − 12
l2
)−1 ≤ 2” appearing in the

final portion of Step (viii) of the proof of [IUTchIV], Theorem 1.10, by the
estimate

(1− 12
l2
)−1 = 1 + 12

l2−12
≤ 1 + 100

l ≤ 1 + 10−13

[where we apply the estimates l ≥ 1015, l2 − 12 ≥ l], we obtain [by applying
the estimate 4.08803 · (1 + 10−13) ≤ 4.0881] the final inequality of Theorem
5.1. �

Corollary 5.2. (Construction of suitable μ6-initial Θ-data) Write X
for the projective line over Q; D ⊆ X for the divisor consisting of the
three points “0”, “1”, and “∞”; (Mell)Q for the moduli stack of elliptic
curves over Q. We shall regard X as the “λ-line” — i.e., we shall regard
the standard coordinate on X as the “λ” in the Legendre form “y2 =
x(x − 1)(x − λ)” of the Weierstrass equation defining an elliptic curve —

and hence as being equipped with a natural classifying morphism UX
def
=

X \D → (Mell)Q [cf. the discussion preceding [IUTchIV], Proposition 1.8].
Let κ ∈ R>0 ∩ R≤1;

K def
= KV(Q)arc(κ) ⊆ UX(Q) (

∼→ Q
�
)

a compactly bounded subset [cf. Definition 1.13]; d ∈ Z>0 [cf. [IUTchIV],
Corollary 2.2, (ii), (iii)]; ε ∈ R>0∩R≤1 [cf. [IUTchIV], Corollary 2.2, (iii)].
Write

log(q∀(−))

for the R-valued function on (Mell)Q(Q), hence on UX(Q), obtained by
forming the normalized degree “deg(−)” of the effective arithmetic divisor
determined by the q-parameters of an elliptic curve over a number field
at arbitrary nonarchimedean places [cf. [IUTchIV], Corollary 2.2, (i)];
UX(Q)≤d ⊆ UX(Q) for the subset of Q-rational points defined over a finite
extension field of Q of degree ≤ d; UX(Q)mcx ⊆ UX(Q) for the subset of Q-
rational points defined over a mono-complex number field [cf. Definition
1.2]. Set

δ
def
= 212 · 33 · 5 · d = 552960 · d;

κlog
def
= 5 · 10−13 − 6.01 · 10−15 log(κ)
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[cf. the term “HK” in the first display of [IUTchIV], Corollary 2.2, (iii)];

hd(ε)
def
=

⎧⎪⎪⎨
⎪⎪⎩

3.4 · 1030 · ε−166/81 (d = 1)

6 · 1031 · ε−174/85 (d = 2)

3.4 · 1030 · ε−166/81 · d5 (d ≥ 3)

[cf. the term “Hunif · ε−3 · ε−3
d · d4+εd” in the first display of [IUTchIV],

Corollary 2.2, (iii), where we take “εd” to be 1]. Then there exists a finite
subset

Excκ,d,ε ⊆ UX(Q)≤d (respectively, Excmcx
d,ε ⊆ UX(Q)≤d ∩ UX(Q)mcx)

— which depends only on κ, d, ε (respectively, d, ε) and contains all points
corresponding to elliptic curves that admit automorphisms of order > 2 —
satisfying the following properties:

• The function log(q∀(−)) is

≤ max{κlog, hd(ε)} (respectively, ≤ hd(ε))

on Excκ,d,ε (respectively, Excmcx
d,ε ).

• Let EF be an elliptic curve over a number field F ⊆ Q that determines
a Q-valued point of (Mell)Q which lifts [not necessarily uniquely!] to a point

xE ∈ UX(F ) ∩ UX(Q)≤d ∩ K
(respectively, xE ∈ UX(F ) ∩ UX(Q)≤d ∩ UX(Q)mcx)

such that
xE /∈ Excκ,d,ε (respectively, xE /∈ Excmcx

d,ε ).

Write Fmod for the minimal field of definition of the corresponding point
∈ (Mell)Q(Q) and

Fmod ⊆ Ftpd
def
= Fmod(EFmod

[2]) ⊆ F

for the “tripodal” intermediate field obtained from Fmod by adjoining the
fields of definition of the 2-torsion points of any model of EF ×F Q over
Fmod [cf. [IUTchIV], Proposition 1.8, (ii), (iii)]. Moreover, we assume that
the (3 · 5)-torsion points of EF are defined over F , and that

F = Fmod(
√−1, EFmod

[2 · 3 · 5]) def
= Ftpd(

√−1, EFtpd
[3 · 5])

— i.e., that F is obtained from Ftpd by adjoining
√−1, together with the

fields of definition of the (3 ·5)-torsion points of a model EFtpd
of the elliptic

curve EF ×F Q over Ftpd determined by the Legendre form of the Weier-
strass equation discussed above [cf. [IUTchIV], Proposition 1.8, (vi)]. [Thus,
it follows from [IUTchIV], Proposition 1.8, (iv), that EF

∼= EFtpd
×Ftpd

F
over F , so xE ∈ UX(Ftpd) ⊆ UX(F ); it follows from [IUTchIV], Proposi-
tion 1.8, (v), that EF has stable reduction at every element of V(F )non.]
Write

log(q∀)
for the result of applying the function “log(q∀(−))” to xE. Then EF and Fmod

arise as the “EF” and “Fmod” for a collection of μ6-initial Θ-data as in
Theorem 5.1 that satisfies the following conditions:
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(C1) (1015·d ≤) (log(q∀))
1
2 ≤ l ≤ 1.464δ·(log(q∀))12 ·log(1.45δ·log(q∀));

(C2) we have an inequality

1
6 · log(q∀) ≤ (1 + ε) · (log-diffX(xE) + log-condD(xE))

— where we write log-diffX for the [normalized] log-different function on
UX(Q) [cf. [GenEll], Definition 1.5, (iii)]; log-condD for the [normalized]
log-conductor function on UX(Q) [cf. [GenEll], Definition 1.5, (iv)].

Proof. First, let us recall that if the once-punctured elliptic curve associated
to EF fails to admit an F -core, then it holds that

j(EF ) ∈ {214 · 313 · 5−3, 22 · 733 · 3−4, 26 · 33, 0}

[cf. Proposition 2.1]. Thus, if we take the set Excκ,d,ε (respectively, Exc
mcx
d,ε ) to

be the [finite!] collection of points corresponding to these four j-invariants,
then we may assume that the once-punctured elliptic curve associated to EF

admits an F -core — hence, in particular, does not have any automorphisms
of order > 2 over Q — and that it holds that

log(q∀(−)) ≤ max{log(53), log(34)} = log(53)

on Excκ,d,ε (respectively, Excmcx
d,ε ) [cf. Remark 1.10.1]. [In the discussion to

follow, it will in fact be necessary to enlarge the finite set Excκ,d,ε (respec-
tively, Excmcx

d,ε ) several times.]
Next, let us write

h
def
= log(q∀) = 1

[F :Q] ·
∑

v∈V(F )non

hv · fv · log(pv)

— that is to say, hv = 0 for those v at which EF has good reduction; hv ∈ N≥1

is the local height of EF [cf. [GenEll], Definition 3.3] for those v at which
EF has bad multiplicative reduction. Now it follows [from [GenEll], Propo-
sition 1.4, (iv) [cf. also the proof of [IUTchIV], Corollary 2.2, (i)] (respec-
tively, from Proposition 1.9, (iii), of the present paper)] that the inequality

h1/2 < 1015 · d implies that there is only a finite number of possibilities for
the j-invariant of EF . Thus, by possibly enlarging the finite set Excκ,d,ε
(respectively, Excmcx

d,ε ), we may assume without loss of generality that

h1/2 ≥ 1015 · d (≥ ξprm),

[cf. the notation of Proposition 2.2], and that it holds that

log(q∀(−)) ≤ max{log(53), 1030 · d2} = 1030 · d2

on Excκ,d,ε (respectively, Exc
mcx
d,ε ).
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Thus, since [F : Q] ≤ δ [cf. the properties (E3), (E4), (E5) in the proof
of [IUTchIV], Theorem 1.10], it follows that

δ · h1/2 ≥ [F : Q] · h1/2 =
∑
v

h−1/2 · hv · fv · log(pv)

≥
∑
v

h−1/2 · hv · log(pv) ≥
∑

hv ≥ h1/2

h−1/2 · hv · log(pv)

≥
∑

hv ≥ h1/2

log(pv)

and

1.45δ · h1/2 · log(1.45δ · h) ≥ 1.45 · [F : Q] · h1/2 · log(1.45 · [F : Q] · h)

≥
∑

hv 
= 0

1.45 · h−1/2 · log(1.45 · hv · fv · log(pv)) · hv · fv · log(pv)

≥
∑

hv 
= 0

h−1/2 · log(hv) · hv ≥
∑

hv ≥ h1/2

h−1/2 · log(hv) · hv

≥
∑

hv ≥ h1/2

log(hv)

— where the sums are all over v ∈ V(F )non [possibly subject to various con-
ditions, as indicated], and we apply the elementary estimate 1.45 · log(pv) ≥
1.45 · log(2) ≥ 1.

Thus, in summary, we conclude from the estimates made above that if we
take

A
to be the [finite!] set of prime numbers p such that p either

(S1) is ≤ h1/2,

(S2) divides a nonzero hv for some v ∈ V(F )non, or

(S3) is equal to pv for some v ∈ V(F )non for which hv ≥ h1/2,

then it follows from Proposition 2.2, (ii), together with our assumption that

h1/2 ≥ ξprm, that, in the notation of Proposition 2.2, (ii),

θA ≤ 2 · h1/2 + δ · h1/2 + 1.45δ · h1/2 · log(1.45δ · h)
= (2 + δ + 1.45δ · log(1.45δ · h)) · h1/2
≤ 1.4621δ · h1/2 · log(1.45δ · h)

— where we apply the estimates 1 + 0.00071 ≤ 2;

2 ≤ 0.0121δ · log(1.45δ · 1030)− δ ≤ 0.0121δ · log(1.45δ · h)− δ

[cf. the fact that the function

0.0121x · log(1.45x · 1030)− x

is monotonically increasing for x ∈ R≥552960]. On the other hand, since we
have

ξprm ≤ h1/2 ≤ 0.0001δ · h1/2 · log(1.45δ · h)
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[cf. the estimates 1 ≤ 0.0001δ and 1 ≤ log(1.45δ · h)], we obtain that

1.00072 · (θA + ξprm) ≤ 1.464δ · h1/2 · log(1.45δ · h)
[cf. the estimate 1.00072 ·(1.4621+0.0001) ≤ 1.464]. In particular, it follows
from Proposition 2.2, (ii), that there exists a prime number l such that

(P1) (1015 ·d ≤) h1/2 ≤ l ≤ 1.464δ ·h1/2 · log(1.45δ ·h) [cf. the condition
(C1) in the statement of Corollary 5.2];

(P2) l does not divide any nonzero hv for v ∈ V(F )non;

(P3) if l = pv for some v ∈ V(F )non, then hv < h1/2.

Next, let us observe that, again by possibly enlarging the finite set Excκ,d,ε
(respectively, Excmcx

d,ε ), we may assume without loss of generality that, in the
terminology of [GenEll], Lemma 3.5,

(P4) EF does not admit an l-cyclic subgroup scheme,

and that it holds that

log(q∀(−)) ≤ max{1030 · d2, κlog}
(respectively, log(q∀(−)) ≤ max{1030 · d2, 5.12 · 10−13} = 1030 · d2)

on Excκ,d,ε (respectively, Excmcx
d,ε ). Indeed, the existence of an l-cyclic sub-

group scheme of EF , together with the fact that l ≥ 1015 [cf. (P1)], would
imply that

h ≤ κlog (respectively, h ≤ 5.12 · 10−13)

[cf. (P2); Remark 1.10.1; Corollary 1.14, (ii) (respectively, Corollary 1.14,
(iii))]. On the other hand, [by [GenEll], Proposition 1.4, (iv) [cf. also
the proof of [IUTchIV], Corollary 2.2, (i)] (respectively, Proposition 1.9,
(iii))] this implies that there is only a finite number of possibilities for the
j-invariant of EF . This completes the proof of the above observation.

Next, we observe that

(P5) if we write Vbad
mod for the set of nonarchimedean places ∈ Vmod that

do not divide l and at which EF has bad multiplicative reduction,
then Vbad

mod �= ∅.

Indeed, if Vbad
mod = ∅, then it follows, in light of the definition of h, from (P3)

that

h ≤ h1/2 · log(l).
In particular, we have

h1/2 ≤ log(l) ≤ log(1.464δ) + 0.5 · log(h) + log(log(1.45δ · h))
≤ log(1.464δ) + 0.5 · log(h) + log(1.45δ · h)
= 1.5 · log(h) + log(1.464δ) + log(1.45δ)

≤ 1.5 · log(h) + 2 · log(2δ)
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—where the second inequality follows from (P1); the third inequality follows
from the fact that log(x) ≤ x for all x ∈ R≥1; the fourth inequality follows
from the estimate 1.464 · 1.45 ≤ 4. Thus, if we write f(x) for the function

x1/2 − 1.5 · log(x) − 2 · log(2δ),
then it holds that f(h) ≤ 0. On the other hand, since [as is easily verified]
f(x) is monotonically increasing for x ∈ R≥9, we obtain that

f(h) ≥ f(1030 · d2)
= 1015 · d − 3 · log(1015 · d) − 2 · log(213 · 33 · 5 · d)
≥ 1015 · d − 5 · log(1015 · d) > 0

— where we apply the estimate 213 ·33 ·5 ≤ 1015; the fact that 5 · log(x) < x
for all x ∈ R≥13 — a contradiction. This completes the proof of the above
observation. This property (P5) implies that

(P6) the image of the outer homomorphism Gal(Q/F ) → GL2(Fl) deter-
mined by the l-torsion points of EF contains the subgroup SL2(Fl) ⊆
GL2(Fl).

Indeed, since, by (P5), EF has bad multiplicative reduction at some place
∈ Vbad

mod �= ∅, (P6) follows formally from (P2), (P4), and [GenEll], Lemma
3.1, (iii) [cf. the proof of the final portion of [GenEll], Theorem 3.8].

Now it follows formally from (P1), (P2), (P5), and (P6) that, if one takes
“F” to be Q, “F” to be the number field F of the above discussion, “XF ” to
be the once-punctured elliptic curve associated to EF , “l” to be the prime
number l of the above discussion, and “Vbad

mod”to be the set Vbad
mod of (P5),

then there exist data “CK”, “V”, and “ε” such that all of the conditions of
Definition 4.1 are satisfied, and, moreover, that

(P7) the resulting μ6-initial Θ-data

(F/F, XF , l, CK , V, Vbad
mod, ε)

satisfies the various conditions in the statement of Theorem 5.1.

Here, we note in passing that the crucial existence of data “V” and “ε”
satisfying the requisite conditions follows, in essence, as a consequence of
the fact [i.e., (P6)] that the Galois action on l-torsion points contains the
full special linear group SL2(Fl).

In light of (P7), we may apply Theorem 5.1 [cf. also the fact that e∗mod ≤
d∗mod] to conclude that

1
6 · log(q) ≤ (1 + 20·dmod

l ) · (log(dFtpd) + log(fFtpd)) + 4.0881 · d∗mod · l
≤ (1 + δ · h−1/2) · (log(dFtpd) + log(fFtpd))

+ 5.985 · δ2 · h1/2 · log(1.45δ · h)
— where we apply (P1), as well as the estimates 20 · dmod ≤ d∗mod ≤ δ
and 4.0881 · 1.464 ≤ 5.985.

Next, let us observe that it follows from (P3) that

1
6 · h− 1

6 · log(q) ≤ 1
6 · h1/2 · log(l).
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Thus, we conclude that

1
6 · h ≤ (1 + δ · h−1/2) · (log(dFtpd) + log(fFtpd)) + 1

6 · h1/2 · log(l)
+ 5.985 · δ2 · h1/2 · log(1.45δ · h)

and hence that

(P8) the following equality holds:

1
6 · h · (1− h−1/2 · log(l)− 35.91 · δ2 · h−1/2 · log(1.45δ · h))

≤ (1 + δ · h−1/2) · (log(dFtpd) + log(fFtpd)).

Now we claim that

Claim 5.2A: If h ≥ hd(ε), then it holds that

71.82 · δ2 · h−1/2 · log(1.45δ · h) ≤ ε · (1− 10−7).

Indeed, since [as is easily verified] the function x−1/2 · log(1.45δ ·x) is mono-
tonically decreasing for x ∈ R>1, to verify Claim 5.2A, it suffices to show
that

71.82 · δ2 · hd(ε)−1/2 · log(1.45δ · hd(ε)) ≤ ε · (1− 10−7).

Let us prove this inequality. First, suppose that d ∈ {1, 2}. Write δ1
def
=

212 · 33 · 5, δ2 def
= 213 · 33 · 5. Then one verifies easily that

71.82 · δ2 · hd(1)−1/2 · log(1.45δ · hd(1)) ≤ 1− 10−7.

Thus, if d = 1, then we have

71.82 · δ2 · hd(ε)−1/2 · log(1.45δ · hd(ε))
= 71.82 · δ2 · hd(1)−1/2 · log(1.45δ · hd(1)) · ε83/81 ·

{
1− log(ε2/81)·83

log(1.45δ·hd(1))

}
≤ ε · (1− 10−7) · ε2/81 · (1− log(ε2/81)) ≤ ε · (1− 10−7);

if d = 2, then we have

71.82 · δ2 · hd(ε)−1/2 · log(1.45δ · hd(ε))
= 71.82 · δ2 · hd(1)−1/2 · log(1.45δ · hd(1)) · ε87/85 ·

{
1− log(ε2/85)·87

log(1.45δ·hd(1))

}
≤ ε · (1− 10−7) · ε2/85 · (1− log(ε2/85)) ≤ ε · (1− 10−7).

Here, we apply the estimate log(1.45δ1 ·h1(1)) ≥ 83; the estimate log(1.45δ2 ·
h2(1)) ≥ 87; our assumption that 0 < ε ≤ 1; the fact that x · (1− log(x)) ≤ 1
for all x ∈ R>0.

Next, suppose that d ≥ 3. Then we have

71.82 · δ2 · hd(ε)−1/2 · log(1.45δ · hd(ε))
= 71.82 · δ21 · h1(ε)−1/2 · log(1.45δ1 · h1(ε)) · d−1/2 ·

{
1 + 6·log(d)

log(1.45δ1·h1(ε))

}
≤ ε · (1− 10−7) · d−1/2 · (1 + 6

83 · log(d)) ≤ ε · (1− 10−7)

— where we apply the estimate log(1.45δ1 ·h1(ε)) ≥ log(1.45δ1 ·h1(1)) ≥ 83;

the fact that x−1/2 ·(1+ 6
83 ·log(x)) ≤ 1 for all x ∈ R≥3; the estimate obtained

above in the case where d = 1. This completes the proof of Claim 5.2A.
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Next, we claim that

Claim 5.2B: If h ≥ hd(ε), then it holds that

2 · h−1/2 · log(l) + 71.82 · δ2 · h−1/2 · log(1.45δ · h) + δ · h−1/2 ≤ ε.

Indeed, since [cf. (P1)] it holds that

71.82 · δ · log(1.45δ ·h) ≥ 71.82 ·212 ·33 ·5 · log(1.45 ·212 ·33 ·5 ·1030) ≥ 108,

we have

71.82 · δ2 · h−1/2 · log(1.45δ · h) ≥ 108 · δ · h−1/2.

Moreover, since it holds that

71.82 · δ2 ≥ 71.82 · (212 · 33 · 5)2 ≥ 4 · 1012,
we have [cf. (P1)]

71.82 · δ2 · h−1/2· log(1.45δ · h)
≥ 1012 · 2 · h−1/2 · log((1.45δ · h)2)
≥ 1012 · 2 · h−1/2 · log(1.464δ · h1/2 · 1.45δ · h)
≥ 1012 · 2 · h−1/2 · log(1.464δ · h1/2 · log(1.45δ · h))
≥ 1012 · 2 · h−1/2 · log(l)

— where the second inequality follows from the estimate 1.45 ·h1/2 ≥ 1.464;
the third inequality follows from the fact that x ≥ log(x) for all x ∈ R≥1.
Thus, it follows from Claim 5.2A that

2 · h−1/2 · log(l) + 71.82 · δ2 · h−1/2 · log(1.45δ · h) + δ · h−1/2

≤ (10−12 + 1 + 10−8) · 71.82 · δ2 · h−1/2 · log(1.45δ · h)
≤ (10−12 + 1 + 10−8) · ε · (1− 10−7) ≤ ε

— where we apply the estimate (10−12 + 1 + 10−8) · (1 − 10−7) ≤ 1. This
completes the proof of Claim 5.2B.

Here, note that the inequality h < hd(ε) implies [by [GenEll], Proposition
1.4, (iv) [cf. also the proof of [IUTchIV], Corollary 2.2, (i)] (respectively,
Proposition 1.9, (iii))] that there is only a finite number of possibilities for
the j-invariant of EF . Thus, by possibly enlarging the finite set Excκ,d,ε
(respectively, Excmcx

d,ε ), we may assume without loss of generality that

h ≥ hd(ε),

and that it holds that

log(q∀(−)) ≤ max{1030 · d2, κlog, hd(ε)}
= max{κlog, hd(ε)}

(respectively,

log(q∀(−)) ≤ max{1030 · d2, hd(ε)}
= hd(ε))

[cf. the estimate hd(ε) ≥ 1030 · d2] on Excκ,d,ε (respectively, Exc
mcx
d,ε ).
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Thus, in light of Claim 5.2B, it follows from (P8) [cf. also (P1)] that

1
6 · h ≤ (1 + ε) · (log(dFtpd) + log(fFtpd))

≤ (1 + ε) · (log-diffX(xE) + log-condD(xE))

— where we apply the fact that for any x, y ∈ R>0 such that 2x+ y ≤ ε, it
holds that

(1− x)−1 · (1 + y) ≤ 1 + ε

[which is a consequence of the fact that 0 < ε ≤ 1]. This completes the proof
of (C2), hence [cf. (P1), (P7)] of Corollary 5.2. �

Theorem 5.3. (Effective versions of ABC/Szpiro inequalities over
mono-complex number fields) Let L be a mono-complex number field
[cf. Definition 1.2]; a, b, c ∈ L× nonzero elements of L such that

a+ b+ c = 0;

ε a positive real number ≤ 1. Write Ea,b,c for the elliptic curve over L
defined by the equation y2 = x(x− 1)(x+ a

c ); j(Ea,b,c) for the j-invariant of

Ea,b,c; ΔL for the absolute value of the discriminant of L; d
def
= [L : Q];

HL(a, b, c)
def
=

∏
v∈V(L)

max{|a|v, |b|v, |c|v};

IL(a, b, c)
def
= {v ∈ V(L)non | �{|a|v, |b|v, |c|v} ≥ 2} ⊆ V(L)non;

radL(a, b, c)
def
=

∏
v∈IL(a,b,c)

�(OL/pv);

hd(ε)
def
=

{
3.4 · 1030 · ε−166/81 (d = 1)

6 · 1031 · ε−174/85 (d = 2).

Then the following hold:

(i) We have [cf. Definition 1.1, (i)]

1
6 · hnon(j(Ea,b,c)) ≤ max{1

d · (1 + ε) · log(ΔL · radL(a, b, c)), 16 · hd(ε)}
≤ 1

d · (1 + ε) · log(ΔL · radL(a, b, c)) + 1
6 · hd(ε).

(ii) We have

HL(a, b, c) ≤ 25d/2 ·max{exp(d4 · hd(ε)), (ΔL · radL(a, b, c))3(1+ε)/2}
≤ 25d/2 · exp(d4 · hd(ε)) · (ΔL · radL(a, b, c))3(1+ε)/2.

Proof. Assertion (i) follows immediately from Corollary 5.2 [cf. the bound
on the restriction of the function “log(q∀(−))” to “Excmcx

d,ε ”; the displayed

inequality of (C2)], Remark 1.10.1, and the various definitions involved.
Next, we consider assertion (ii). Write w ∈ V(L)arc for the unique element
of V(L)arc [cf. Definition 1.2]. First, we claim the following:
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Claim 5.3A: It holds that

d · htornon(
b
c) = 1

2 log |bc|w +
∑

v∈V(L)non
logmax{|a|v, |b|v, |c|v}.

Indeed, we compute:

d · htornon(
b
c) = 1

2

∑
v∈V(L)non

logmax{| bc |v, | cb |v}

= 1
2

∑
v∈V(L)non

log( 1
|bc|v ·max{|b|2v, |c|2v})

= 1
2 log |bc|w +

∑
v∈V(L)non

logmax{|b|v, |c|v}

= 1
2 log |bc|w +

∑
v∈V(L)non

logmax{|a|v, |b|v, |c|v}

— where the third equality (respectively, the fourth equality) follows from
the product formula (respectively, the fact that for v ∈ V(L)non,

|a|v = |b+ c|v ≤ max{|b|v, |c|v}).
This completes the proof of Claim 5.3A.

Next, we observe that, to verify assertion (ii), we may assume without
loss of generality that

||a||w ≤ ||b||w ≤ ||c||w.
Then we observe the following:

Claim 5.3B: It holds that || bc ||w ≥ 1
2 , hence that | bc |w ≥ (12)

d.

Indeed, since a+ b+ c = 0, we have

||c||w = ||a+ b||w ≤ ||a||w + ||b||w ≤ 2 · ||b||w.
This completes the proof of Claim 5.3B.

Now we claim the following:

Claim 5.3C: It holds that

1
6 · hnon(j(Ea,b,c)) ≥ 2

3d · log(HL(a, b, c))− 5
3 log 2.

Indeed, it follows from Lemma 1.3, (i), (iv); Proposition 1.8, (i); Remark
1.10.1, that

(∗1) 1
6 · hnon(j(Ea,b,c)) +

4
3 log 2 ≥ 1

3 · (htornon(
a
c ) + htornon(

b
c) + htornon(

b
a))

≥ 2
3 · htornon(

b
c).

On the other hand, we have

(∗2) d · htornon(
b
c) = 1

2 log |bc|w +
∑

v∈V(L)non
logmax{|a|v, |b|v, |c|v}

= 1
2 log | bc |w + log(HL(a, b, c))

≥ d
2 log

1
2 + log(HL(a, b, c))

— where the first equality (respectively, the second equality; the final in-
equality) follows from Claim 5.3A (respectively, the fact that |c|w ≥ |b|w ≥
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|a|w; Claim 5.3B). The inequality of Claim 5.3C follows immediately from
(∗1) and (∗2).

Finally, in light of assertion (i) and Claim 5.3C, we obtain that

log(HL(a, b, c)) ≤ max{d
4 ·hd(ε), 32(1+ ε) · log(ΔL · radL(a, b, c))}+ 5d

2 log 2.

This completes the proof of assertion (ii). �

Remark 5.3.1. The astronomically large constants in the inequalities es-
tablished in Theorem 5.3 reflect the explicit [i.e., “non-conjectural”] nature
of inter-universal Teichmüller theory. Their size may seem quite unexpected,
especially from the point of view of the classical [“conjectural”] literature on
such inequalities, where sometimes it is even naively assumed that these
constants may be taken to be as small as 1.

Remark 5.3.2. The approach to applying the version of the ABC inequality
established in Theorem 5.3, (ii), to “Fermat’s Last Theorem” in the present
paper [cf. Corollary 5.8 below] extends to other diophantine equations [cf.
Corollary 5.9 below]. Namely, in view of the very large constants [cf. Re-
mark 5.3.1] that appear, in order to apply such an inequality to a concrete
diophantine equation of the form u + v = w with polynomial functions u,
v, w which involve, respectively, positive integers l, m, n as exponents, one
needs first to establish a lower bound on potential solutions of this equation
[cf. Lemma 5.7 below; the second to last display of the proof of Corollary
5.9]. One then applies a suitable version of the ABC inequality to obtain an
upper bound on l, m, n, under the condition that the diophantine equation
admits a solution of the desired type [cf. the portion of the proof of Corol-
lary 5.8 subsequent to the application of Lemma 5.7; the final display of the
proof of Corollary 5.9]. Finally, the existence of solutions to the diophan-
tine equation for l, m, n satisfying the upper bound may be investigated by
means of computer calculations.

Remark 5.3.3. In the notation of Theorem 5.3, let λ ∈ L�. Write Eλ for
the elliptic curve over L defined by the equation y2 = x(x− 1)(x− λ); DEλ

(respectively, fEλ
) for the minimal discriminant ideal [cf. [Silv1], Chapter

VIII, §8, the first Definition] (respectively, conductor ideal [cf. [Silv2], Chap-
ter IV, §10, the Definition preceding Example 10.5]) of Eλ over L. Let us
first observe that Eλ has semi-stable reduction at every place v ∈ V(L)non

such that λ is integral at v, and v does not divide 2. If v ∈ V(L)non is such
that λ is not integral at v, then observe the following:

There exists an element u ∈ L× such that u = λw2 for some
w ∈ L×, and, moreover, u is a unit or a uniformizer at v.
Thus, Eλ is defined by the equation

(y′)2 = x′(x′ − u)(x′ − uλ′),

where we write λ′ def= λ−1 ∈ L× [so u and uλ′ are integral at

v], x′ def= uλ′x, and y′ def= w3y.
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In particular, by applying a similar argument to the argument applied in
[Silv1], Chapter VII, §5, the proof of Proposition 5.4, we obtain that

log(NL/Q(DEλ
)) ≤ d · hnon(j(Eλ)) + 6(log(NL/Q(fEλ

))− log(radL(a, b, c)))

+ d · (8− (−4)) log 2

— where we take “a” (respectively, “b”; “c”) to be λ (respectively, 1−λ; −1);
we write “NL/Q(−)” for the absolute norm of the ideal (−) of OL; we recall
that NL/Q(fEλ

) ≥ radL(a, b, c) [cf. Remark 1.10.1; [Silv1], Chapter III, §1,
Proposition 1.7, (b), and its proof; [Silv2], Chapter IV, §10, Theorem 10.2,
(a); [Silv2], Chapter IV, §10, Example 10.5; [Silv2], Chapter IV, §11, Ogg’s
Formula 11.1 and its proof]. Then it follows immediately from Theorem 5.3,
(i), that we have

NL/Q(DEλ
) ≤ 212d ·max{Δ6(1+ε)

L ·NL/Q(fEλ
)6(1+ε), exp(d · hd(ε))}

≤ 212d ·Δ6(1+ε)
L · exp(d · hd(ε)) ·NL/Q(fEλ

)6(1+ε).

This may be regarded as an explicit version of the inequality

“NormeK/Q(ΔE) ≤ C(K, ε)(NormeK/Q(NE))
6+ε”

conjectured in [Szp], §1, CONJECTURE 1 forme forte, in the case of L and
Eλ as above.

Remark 5.3.4. Let K be a field such that 2 is invertible in K, E an elliptic
curve over K whose 2-torsion points are K-rational. Then, by considering
global sections, with suitable leading terms, of tensor powers of the line
bundle on E determined by the origin [cf., e.g., [Hts], Chapter IV, the proof
of Proposition 4.6], one concludes immediately that there exists λ ∈ K�

such that E is isomorphic over K to the elliptic curve over K defined by the
equation y2 = x(x − 1)(x − λ). Conversely, one verifies immediately that
the 2-torsion points of any elliptic curve Eλ over K defined by an equation
of the form y2 = x(x− 1)(x− λ) for some λ ∈ K� are rational over K.

Remark 5.3.5. By combining the inequalities in the second to last display
of Remark 5.3.3 with [HS], Theorem 0.3, one obtains a numerically explicit
version of the inequality that appears in a conjecture of Lang [cf. [HS],
Conjecture 0.1] concerning a lower bound on the canonical height of non-
torsion points, for elliptic curves “Eλ” over “L” as in Remarks 5.3.3, 5.3.4.
One may also apply the inequalities in the second to last display of Remark
5.3.3 to obtain a “partially numerically explicit” version of the displayed
inequality of [HS], Theorem 0.7, for elliptic curves “Eλ” over “L” as in
Remarks 5.3.3, 5.3.4.

Theorem 5.4. (Effective version of a conjecture of Szpiro) Let a, b,
c be nonzero coprime integers such that

a+ b+ c = 0;



EXPLICIT ESTIMATES IN INTER-UNIVERSAL TEICHMÜLLER THEORY 47

ε a positive real number ≤ 1. Then we have

|abc| = ||abc||C ≤ 24 ·max{exp(1.7 · 1030 · ε−166/81), (rad(abc))3(1+ε)}
≤ 24 · exp(1.7 · 1030 · ε−166/81) · (rad(abc))3(1+ε)

— which may be regarded as an explicit version of the inequality

“|abc| ≤ C(ε)
(∏
p|abc

p
)3+ε

”

conjectured in [Szp], §2 [i.e., the “forme forte” of loc. cit., where we note
that the “p” to the right of the “

∏
” in the above display was apparently

unintentionally omitted in loc. cit.].

Proof. First, we claim the following:

Claim 5.4A: In the notation of Theorem 5.3, suppose that

||a||w ≤ ||b||w ≤ ||c||w
— where w ∈ V(L)arc denotes the unique element of V(L)arc

[cf. Definition 1.2]. Then it holds that

HL(a, b, c) ≤ 24d/3 ·max{exp(d6 ·hd(ε)), (ΔL · radL(a, b, c))1+ε} · |abc−2|−1/3
w .

Indeed, it follows from Theorem 5.3, (i), that we have

Claim 5.4B: It holds that

1
6 · hnon(j(Ea,b,c)) ≤ max{1

d · (1 + ε) · log(ΔL · radL(a, b, c)), 16 · hd(ε)}.
Now we claim the following:

Claim 5.4C: It holds that

1
6 · hnon(j(Ea,b,c)) ≥ 1

d · log(HL(a, b, c)) +
1
3d · log |abc−2|w − 4

3 log 2.

Let us verify Claim 5.4C. First, let us recall the inequality (∗1) in the proof
of Theorem 5.3

(†1) 1
6 · hnon(j(Ea,b,c)) +

4
3 log 2 ≥ 1

3 · (htornon(
a
c ) + htornon(

b
c) + htornon(

b
a)).

On the other hand, we compute:

(†2) d · (htornon(
a
c ) + htornon(

b
c) + htornon(

b
a))

= 1
2 · (log |ac|w + log |bc|w + log |ba|w) + 3

∑
v∈V(L)non

logmax{|a|v, |b|v, |c|v}

= log |abc|w + 3
∑

v∈V(L)non
logmax{|a|v, |b|v, |c|v}

= log |abc−2|w + 3 · log(HL(a, b, c))

— where the first equality (respectively, the third equality) follows from
Claim 5.3A (respectively, the fact that |c|w ≥ |b|w ≥ |a|w). The inequality
of Claim 5.4C follows immediately from (†1) and (†2). The inequality of
Claim 5.4A then follows immediately from the inequalities of Claims 5.4B,
5.4C.
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Next, we observe that, to verify Theorem 5.4, we may assume without
loss of generality that

||a||C ≤ ||b||C ≤ ||c||C.
Now we apply the inequality in Claim 5.4A to the present situation, by
taking “L” to be Q. Then we have

||c||C ≤ 24/3 ·max{exp(16 · 3.4 · 1030 · ε−166/81), (rad(abc))1+ε} · ||abc−2||−1/3
C .

Therefore, by raising this inequality to the 3-rd power, we conclude that

||abc||C ≤ 24 ·max{exp(1.7 · 1030 · ε−166/81), (rad(abc))3(1+ε)}.
This completes the proof of Theorem 5.4. �

In the following, we give an alternative approach to proving an effective
asymptotic version of “Fermat’s Last Theorem”, as proven in [Wls]. The
following Lemmas 5.5, 5.6, 5.7 are entirely elementary, but their statements
and proofs are given in full detail for lack of a suitable reference.

Lemma 5.5. (Elementary identity) Let p ≥ 3 be an odd integer; r, s
integers such that r + s �= 0. Then we have

(rp + sp)(r + s)−1 = psp−1 − (r + s)

p−2∑
i=0

(−1)i+1(i+ 1)rp−2−isi.

Proof. One verifies immediately that we may assume without loss of gener-
ality that r �= 0. Then, to verify Lemma 5.5, it suffices to show [by dividing
by rp−1] the following equality of elements ∈ Q(x):

(1 + xp)(1 + x)−1 = pxp−1 − (1 + x)

p−2∑
i=0

(−1)i+1(i+ 1)xi.

Write ∂ for the derivation d/dx on Q(x). Then:

pxp−1 = ∂(1 + xp) = ∂{(1 + xp)(1 + x)−1 · (1 + x)}

= (1 + xp)(1 + x)−1 + (1 + x)∂{(1 + xp)(1 + x)−1}

= (1 + xp)(1 + x)−1 + (1 + x)∂
( p−2∑
i=−1

(−1)i+1xi+1
)

= (1 + xp)(1 + x)−1 + (1 + x)

p−2∑
i=0

(−1)i+1(i+ 1)xi.

This completes the verification of Lemma 5.5. �
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Lemma 5.6. (Elementary properties of possible solutions of the
Fermat equation) Let p ≥ 3 be a prime number; r, s, t nonzero coprime
integers such that

rp + sp + tp = 0.

Then the following hold:

(i) Let l be a prime number which divides r + s, (rp + sp)(r + s)−1 ∈ Z.
Then it holds that l = p.

(ii) Suppose that p does not divide t. Then r+ s and (rp+ sp)(r+ s)−1

are coprime. In particular, [since (r+s)·(rp+sp)(r+s)−1 = (−t)p]
there exist integers u and ũ such that

r + s = up, (rp + sp)(r + s)−1 = ũp t = −uũ.

(iii) Suppose that p divides t. Then it holds that

r + s ∈ pZ, (rp + sp)(r + s)−1 ∈ pZ \ p2Z.

In particular, if we write t = pkv, where k ∈ Z>0, v ∈ Z \ pZ, then
[since (r+ s) · (rp+ sp)(r+ s)−1 = (−t)p] there exist integers w /∈ pZ
and w̃ /∈ pZ such that

r + s = pkp−1wp, (rp + sp)(r + s)−1 = pw̃p, v = −ww̃

[cf. (i)].

Proof. First, we consider assertion (i). Let l be a prime number which
divides r + s and (rp + sp)(r + s)−1. In particular, it follows from Lemma
5.5 that l divides psp−1. Thus, if l �= p, then we conclude that l divides s,
hence that l divides r = (r + s)− s — a contradiction. This completes the
proof of assertion (i).

Next, we consider assertion (ii). Suppose that r+s and (rp+sp)(r+s)−1

are not coprime. Then it follows from assertion (i) that p divides r + s and
(rp + sp)(r + s)−1, hence that p divides rp + sp = (−t)p — a contradiction.
Therefore, we conclude that r + s and (rp + sp)(r + s)−1 are coprime. This
completes the proof of assertion (ii).

Finally, we consider assertion (iii). We begin by observing that

(r + s)p ≡ rp + sp ≡ −tp ≡ 0 (mod p),

hence that r+ s ≡ 0 (mod p). In particular, it follows from Lemma 5.5 that
(rp + sp)(r + s)−1 ≡ 0 (mod p). Thus, to verify assertion (iii), it suffices to
prove the following claim:

Claim 5.6A: It holds that (rp + sp)(r + s)−1 /∈ p2Z.
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Indeed, suppose that (rp + sp)(r + s)−1 ∈ p2Z. Write r + s = pm, where
m ∈ Z. Then since we have

(rp + sp)(r + s)−1 = {rp + (pm− r)p}(pm)−1

=
{
rp +

p∑
i=0

(
p

i

)
(pm)p−i(−r)i

}
(pm)−1

=

p−1∑
i=0

(
p

i

)
(pm)p−i−1(−r)i,

our assumption that (rp + sp)(r + s)−1 ∈ p2Z implies that prp−1 ∈ p2Z.
Thus, we conclude that r ∈ pZ, hence that s = (r + s) − r ∈ pZ — a
contradiction. Therefore, we conclude that (rp + sp)(r + s)−1 /∈ p2Z. This
completes the proof of Claim 5.6A, hence also of assertion (iii). �

Lemma 5.7. (Elementary estimate for possible solutions of the Fer-
mat equation) Let p ≥ 3 be a prime number; x, y, z coprime positive
integers such that

xp + yp = zp.

Then it holds that
z > (p+1)p

2 .

Proof. First, we consider the case where p divides xy. [In particular, p does
not divide z.] In this case, to verify Lemma 5.7, we may assume without loss
of generality that p divides x. [In particular, p does not divide y.] Then it
follows by applying Lemma 5.6, (ii), first in the case where we take “(r, s, t)”
to be (x, y,−z), then in the case where we take “(r, s, t)” to be (z,−x,−y),
that there exist positive integers a and b such that

x+ y = ap, z − x = bp.

Here, observe that

(z − y)p ≡ zp − yp ≡ xp ≡ 0 (mod p),

hence that z − y ≡ 0 (mod p). Thus, we obtain that

(b− a)p ≡ bp − ap ≡ (z − y)− 2x ≡ 0 (mod p),

hence that b− a ≡ 0 (mod p). Now we claim the following:

Claim 5.7A: It holds that max{a, b} ≥ p+ 1.

Indeed, suppose that max{a, b} ≤ p. Then it follows from the fact that
b − a ≡ 0 (mod p) that a = b, hence that z = 2x + y. In particular, we
conclude that zp = (2x+ y)p > xp + yp — a contradiction.

In light of Claim 5.7A, we have

2z > z + y = ap + bp > (p+ 1)p.

This completes the proof of Lemma 5.7 in the case where p divides xy.
Next, we consider the case where p does not divide xyz. Then it follows

by applying Lemma 5.6, (ii), first in the case where we take “(r, s, t)” to be
(x, y,−z), then in the case where we take “(r, s, t)” to be (z,−x,−y), and
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finally in the case where we take “(r, s, t)” to be (z,−y,−x), that there exist
positive integers a, b, and c such that

x+ y = ap, z − x = bp, z − y = cp.

Here, observe that

(z − x− y)p ≡ zp − xp − yp ≡ 0 (mod p),

hence that z − x− y ≡ 0 (mod p). Thus, we obtain that

(b+ c− a)p ≡ bp + cp − ap ≡ 2(z − x− y) ≡ 0 (mod p),

hence that b+ c− a ≡ 0 (mod p). Now we claim the following:

Claim 5.7B: It holds that a ≥ p+ 1.

Indeed, suppose that a ≤ p. Observe that since (2x + y)p > xp + yp = zp,
(x+ 2y)p > xp + yp = zp, it holds that x+ y > z − x, x+ y > z − y, hence
that a > b, a > c. Thus, we conclude that

−p ≤ −a < b+ c− a < a+ a− a ≤ p,

hence that b+ c− a = 0. Next, we claim that

Claim 5.7C: Write E
def
= {� ∈ {a, b, c} | � is even}. Then it

holds that �E = 1.

Indeed, it follows immediately from the equality b+ c− a = 0 that �E ≥ 1.
Suppose that �E ≥ 2. Then it follows from the equality b + c − a = 0 that
a, b, and c are even. In particular, since ap (= x+ y) divides zp (= xp+ yp),
we conclude that z is even. On the other hand, this implies that x and y
are even [cf. the equalities z − x = bp and z − y = cp] — a contradiction.
This completes the proof of Claim 5.7C.

Now suppose that E = {a} [cf. Claim 5.7C]. Here, note that it follows by
applying Lemma 5.6, (ii), in the case where we take “(r, s, t)” to be (x, y,−z),
that there exists a positive integer ã such that (xp + yp)(x+ y)−1 = ãp. [In
particular, we have z = aã.] Then since

(bp + cp)(b+ c)−1 = (bp + cp)a−1 = (2z − x− y)a−1 = 2ã− ap−1,

we conclude that (bp + cp)(b + c)−1 is an even integer. On the other hand,
since

(bp + cp)(b+ c)−1 =

p−1∑
i=0

(−1)ibp−i−1ci,

and, moreover, each term “bp−i−1ci” is odd, we conclude that (bp+cp)(b+c)−1

is odd — a contradiction.
Thus, it follows from Claim 5.7C that E ∈ {{b}, {c}}. Moreover, to verify

Claim 5.7B, we may assume without loss of generality that E = {b}. Next,
observe that it follows by applying Lemma 5.6, (ii), in the case where we

take “(r, s, t)” to be (z,−x,−y), that there exists a positive integer b̃ such

that (zp − xp)(z − x)−1 = b̃p. [In particular, we have y = bb̃.] Then since

(ap − cp)(a− c)−1 = (ap − cp)b−1 = (2y + x− z)b−1 = 2b̃− bp−1,
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we conclude that (ap − cp)(a− c)−1 is an even integer. On the other hand,
since

(ap − cp)(a− c)−1 =

p−1∑
i=0

ap−i−1ci,

and, moreover, each term “ap−i−1ci” is odd, we conclude that (ap − cp)(a−
c)−1 is odd — a contradiction. This completes the proof of Claim 5.7B.

In light of Claim 5.7B, we have

2z > x+ y = ap ≥ (p+ 1)p.

This completes the proof of Lemma 5.7 in the case where p does not divide
xyz.

Finally, we consider the case where p divides z. [In particular, p does not
divide xy.] Then it follows by applying Lemma 5.6, (ii), first in the case
where we take “(r, s, t)” to be (z,−x,−y), then in the case where we take
“(r, s, t)” to be (z,−y,−x), that there exist positive integers b and c such
that

z − x = bp, z − y = cp.

Moreover, it follows by applying Lemma 5.6, (iii), in the case where we take
“(r, s, t)” to be (x, y,−z), that there exist positive integers w /∈ pZ and k,
together with a negative integer v /∈ pZ, such that

x+ y = pkp−1wp, z = −pkv.

Next, observe that

(b+ c)p ≡ bp + cp ≡ 2z − x− y ≡ 0 (mod p),

hence that b+ c ≡ 0 (mod p). In particular, it follows from the equality

bp + cp = pcp−1(b+ c)− (b+ c)2
p−2∑
i=0

(−1)i+1(i+ 1)bp−2−ici

[cf. Lemma 5.5] that bp + cp ∈ p2Z. Thus, since we have

−2pkv = 2z = (z − x) + (z − y) + (x+ y) = bp + cp + pkp−1wp ∈ p2Z

[cf. the fact that kp−1 ≥ 2], we conclude that k ≥ 2. Therefore, we conclude
that

2z > x+ y ≥ p2p−1wp > (p+ 1)p

[cf. the fact that γ2γ−1 > (γ + 1)γ for all γ ∈ R≥3]. This completes the
proof of Lemma 5.7 in the case where p divides z. �

Remark 5.7.1.

(i) In the notation of Lemma 5.7, we observe that a stronger estimate

z > z − x > (2p20/7)p

may be obtained by means of techniques of classical algebraic number theory
that are somewhat more involved than the argument given above in the proof
of Lemma 5.7 [cf. [Ink1]; [Ink2], Theorem 2].
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(ii) In fact, it follows from [Ink1], (4), that, in the situation of (i), if we
assume further that p divides xyz, then a stronger estimate

z > p3p−1

2

may be obtained.

Remark 5.7.2. In the notation of Lemma 5.7, suppose that p divides xyz,
and that p ≥ 257. Then we observe that an even stronger estimate [i.e.,
than the estimate of Remark 5.7.1, (ii)]

z ≥ p(5/2)
p−1

may be obtained by means of techniques that are somewhat more involved
than the argument given above in the proof of Lemma 5.7 [cf. [MR], The-
orem 1]. [A similar, but weaker estimate may be found in [Mls], Lemma
2.] These techniques of Mihăilescu [and Rassias] use Mihăilescu’s technique
of working with a map of the Stickelberger ideal into the algebraic inte-
gers and related power series developments associated to the image of this
map, as well as a new insight on lattices and an “inhomogeneous Siegel box
principle”.

Corollary 5.8. (Application to “Fermat’s Last Theorem”) Let

p > 1.615 · 1014
be a prime number. Then there does not exist any triple (x, y, z) of positive
integers that satisfies the Fermat equation

xp + yp = zp.

Proof. Suppose that there exists a triple (x, y, z) of positive integers such
that xp + yp = zp. Here, we may assume without loss of generality that x,
y, z are coprime. Then it follows from Lemma 5.7 that

z > (p+1)p

2 .

Now we apply Theorem 5.3, (ii), to the present situation, by taking

• “L” to be Q;

• “(a, b, c)” to be (xp, yp,−zp);

• “ε” to be 1.

Then, in the notation of Theorem 5.3, we have

zp ≤ 25/2 · exp(14 · h1(1)) · (radQ(xp, yp,−zp))3

≤ 25/2 · exp(14 · h1(1)) · (xyz)3
≤ 25/2 · exp(14 · h1(1)) · (z3)3

— where we apply the fact that z ≥ max{x, y}. Thus, we obtain that{
(p+1)p

2

}p−9
< zp−9 ≤ 25/2 · exp(14 · h1(1)).
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In particular, we conclude that

(p− 9)(−1 + p · log2(p+ 1)) < 5
2 + log2(e) · 1

4 · h1(1) < 1.227 · 1030.
On the other hand, since [as is easily verified] the function

(x− 9)(−1 + 1.44x · log(x+ 1))

is monotonically increasing for x ∈ R≥9, we have

(p− 9)(−1 + p · log2(p+ 1)) = (p− 9)(−1 + 1
log(2) · p · log(p+ 1))

> (p− 9)(−1 + 1.44 · p · log(p+ 1))

> 1.227 · 1030

— where the first (respectively, second) inequality follows from the esti-
mate 1

log(2) > 1.44 (respectively, our assumption that p > 1.615 · 1014) — a

contradiction. This completes the proof of Corollary 5.8. �

Remark 5.8.1. By combining Corollary 5.8 with the numerical estimate
of [Cop] [cf. [Cop], Abstract; the discussion following the first display of
[Cop], §3], we obtain [by applying the estimate 7.568 · 1017 > 1.615 · 1014]
the following result:

Let p be an odd prime number. Then there does not exist
any triple (x, y, z) of positive integers such that p does not
divide xyz, and, moreover, the Fermat equation

xp + yp = zp

is satisfied.

This assertion is often called the first case of Fermat’s Last Theorem.

Remark 5.8.2.

(i) If we apply the estimate

z > (2p20/7)p

of Remark 5.7.1, (i), instead of Lemma 5.7 in the proof of Corollary 5.8,
then the quantity “1.615 · 1014” in Corollary 5.8 may be replaced by 9.58 ·
1013. Indeed, by applying this estimate of Remark 5.7.1, (i), we obtain the
estimate

(2p20/7)p(p−9) < zp−9 ≤ 25/2 · exp(14 · h1(1)).
In particular, we conclude that

p(p− 9)(1 + 20
7 · log2(p)) < 5

2 + log2(e) · 1
4 · h1(1) < 1.227 · 1030.

Thus, it suffices to observe that the manifestly monotonically increasing
function

x(x− 9)(1 + 20
7 · log2(x))

satisfies the inequality > 1.227 · 1030 for x > 9.58 · 1013.
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(ii) Suppose that p divides xyz. That is to say, we suppose that we
are in the situation of what is often called the second case of Fermat’s Last
Theorem. Then if we apply the estimate

z > p3p−1

2

of Remark 5.7.1, (ii), instead of Lemma 5.7 in the proof of Corollary 5.8,
then the quantity “1.615 · 1014” in Corollary 5.8 may be replaced by 9.39 ·
1013. Indeed, by applying this estimate of Remark 5.7.1, (ii), we obtain the
estimate

(p
3p−1

2 )(p−9) < zp−9 ≤ 25/2 · exp(14 · h1(1)).
In particular, we conclude that

(p− 9)((3p− 1) log2(p)− 1) < 5
2 + log2(e) · 1

4 · h1(1) < 1.227 · 1030.
Thus, it suffices to observe that the manifestly monotonically increasing
function

(x− 9)((3x− 1) log2(x)− 1)

satisfies the inequality > 1.227 · 1030 for x > 9.39 · 1013.

Remark 5.8.3.

(i) Observe that the estimate of Remark 5.7.2 due to [MR] implies the
following consequence:

Let
p ≥ 257

be a prime number. Then there does not exist any triple
(x, y, z) of positive integers such that p divides xyz, and the
Fermat equation

xp + yp = zp

is satisfied.

[A similar, but weaker lower bound for p follows, by a similar argument,
from [Mls], Lemma 2.] Indeed, by applying the estimate of Remark 5.7.2
[instead of Lemma 5.7] in the proof of Corollary 5.8, we obtain the estimate

p(5/2)
p−1(p−9) ≤ zp−9 ≤ 25/2 · exp(14 · h1(1)).

In particular, we conclude that

(52)
p−1(p− 9) log2(p) ≤ 5

2 + log2(e) · 1
4 · h1(1) < 1.227 · 1030.

Thus, it suffices to observe that the manifestly monotonically increasing
function

(52)
x−1(x− 9) log2(x)

satisfies the inequality ≥ 1.227 · 1030 for x ≥ 257.

(ii) By combining (i) with the classical result of [Van] [cf. [Van], Theorem
VIIa, as well as [Rbm], pp. 200-202], we obtain [by applying the estimate
269 > 257] an alternative proof [i.e., to the proof of [Wls]] of the second case
of Fermat’s Last Theorem [cf. Remark 5.8.2, (ii)]. In particular, in light of
Remark 5.8.1, we conclude that the results of the present paper, combined
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with the results of [Van], [Cop], and [MR], yield an unconditional new
alternative proof [i.e., to the proof of [Wls]] of Fermat’s Last Theorem.

Finally, we give an application of the ABC inequality of Theorem 5.4 to a
generalized version of Fermat’s Last Theorem, which does not appear to be
accessible via the techniques involving modularity of elliptic curves over Q

and deformations of Galois representations that play a central role in [Wls].

Corollary 5.9. (Application to a generalized version of “Fermat’s
Last Theorem”) Let r, s, t be nonzero integers every two of which are
coprime. Write

S
def
= {(X,Y, Z) ∈ Z3 | ||XY Z||C ≥ 2}.

Let l, m, n be positive integers such that

min{l,m, n} > max{2.453 · 1030, log2 ||rst||C, 10 + 5 log2(rad(rst))}.
Then there does not exist any triple (x, y, z) ∈ S of coprime [i.e., the set of
prime numbers which divide x, y, and z is empty] integers that satisfies the
equation

rxl + sym + tzn = 0.

Proof. Write k
def
= min{l,m, n}. Suppose that there exists a triple (x, y, z) ∈

S of coprime integers such that rxl + sym + tzn = 0. Then we claim the
following:

Claim 5.9A: rxl, sym, and tzn are coprime.

Indeed, suppose that a prime number p divides rxl, sym, and tzn. Let us
consider the set

E
def
= {� ∈ {x, y, z} | p divides �}.

Then, by applying our assumption that (x, y, z) are coprime (respectively,
every two of (r, s, t) are coprime), we conclude that �E ≤ 2 (respectively,
�E ≥ 2), hence that �E = 2. Thus, to verify Claim 5.9A, we may assume
without loss of generality that p divides x and y. [In particular, p does not
divide z.] Then observe that pk divides rxl and sym, hence also tzn. In
particular, since p does not divide z, we conclude that pk divides t. Thus,
we have

log2 ||rst||C ≥ log2 ||t||C ≥ log2 p
k ≥ k

— a contradiction. This completes the proof of Claim 5.9A.
Now we apply Theorem 5.4 to the present situation, by taking

• “(a, b, c)” to be (rxl, sym, tzn) [cf. Claim 5.9A];

• “ε” to be 1.
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Then we have

||rst||C · ||xyz||kC ≤ ||rstxlymzn||C
≤ 24 ·max{exp(1.7 · 1030), (rad(rstxlymzn))6}
= 24 ·max{exp(1.7 · 1030), (rad(rstxyz))6}.

On the other hand, since

||rst||C · ||xyz||kC ≥ rad(rst) · ||xyz||kC
> 24 · (rad(rst))6 · ||xyz||6C
≥ 24 · (rad(rstxyz))6

[cf. our assumptions that k > 4+(6−1)·log2(rad(rst))+6 and ||xyz||C ≥ 2],
we obtain that

2k ≤ ||rst||C · ||xyz||kC ≤ 24 · exp(1.7 · 1030),
hence that k ≤ 2.453 · 1030 — a contradiction. This completes the proof of
Corollary 5.9. �
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